Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New optical tweezers trap specimens just a few nanometers across

This illustration shows the new aperture design (left) with two layers of silver separated by another of silicon dioxide. The structure focuses light in a novel way to trap particles smaller than ever before. The focused beams are shown in the illustration on the right.
This illustration shows the new aperture design (left) with two layers of silver separated by another of silicon dioxide. The structure focuses light in a novel way to trap particles smaller than ever before. The focused beams are shown in the illustration on the right.

Abstract:
A microscale technique known as optical trapping uses beams of light as tweezers to hold and manipulate tiny particles. Stanford researchers have found a new way to trap particles smaller than 10 nanometers - and potentially down to just a few atoms in size - which until now have escaped light's grasp.

New optical tweezers trap specimens just a few nanometers across

Stanford, CA | Posted on December 5th, 2012


By Kelly Servick

To grasp and move microscopic objects, such as bacteria and the components of living cells, scientists can harness the power of concentrated light to manipulate them without ever physically touching them.

Now, doctoral student Amr Saleh and Assistant Professor Jennifer Dionne, researchers at the Stanford School of Engineering, have designed an innovative light aperture that allows them to optically trap smaller objects than ever before - potentially just a few atoms in size.

The process of optical trapping - or optical tweezing, as it is often known - involves sculpting a beam of light into a narrow point that produces a strong electromagnetic field. The beam attracts tiny objects and traps them in place, just like a pair of tweezers.

Unfortunately, there are natural limits to the technique. The process breaks down for objects significantly smaller than the wavelength of light. Therefore, optical tweezers cannot grasp super-small objects like individual proteins, which are only a couple of nanometers in diameter.

Saleh and Dionne have shown theoretically that light passed through their novel aperture would stably trap objects as small as 2 nanometers. The design was published in the journal Nano Letters, and Saleh is now building a working prototype of the microscopic device.
Agonies of scale

As a materials scientist, Jennifer Dionne imagined an optical tool that would help her precisely move molecular building blocks into new configurations. "Optical tweezers seemed like a really cool way of assembling new materials," she said. Dionne is the paper's senior author.

Unfortunately, existing optical tweezers are not adept at handling these tiny building blocks. "It's been a known for several decades that trapping nano-sized objects with light would be challenging," said Dionne.

The problem is inherent to the light beam itself. Optical trapping typically uses light in the visible spectrum (with wavelengths between 400 and 700 nanometers) so that scientist can actually see the specimen as they manipulate it.

Due to a physical constraint called the diffraction limit of light, the smallest space in which optical tweezing can trap a particle is approximately half the wavelength of the light beam. In the visible spectrum this would be about 200 nanometers - half the shortest visible wavelength of 400 nanometers.

Thus, if the specimen in question is only 2 nanometers wide - the size of a typical protein - trapping it in a space of 200 nanometers allows only very loose control at best. Scale-wise, it is akin to guiding a minnow with 20-meter-wide fishing net.

Additionally, the optical force that light can exert on an object diminishes as the objects get smaller. "If you want to trap something very small, you need a tremendous amount of power, which will burn your specimen before you can trap it," Saleh said.

Some researchers get around this problem by attaching the specimen to a much larger object that can be dragged around with light. Dionne noted, however, that important molecules like insulin or glucose might behave quite differently when attached to giant anchors than they would on their own. To isolate and move a tiny object without frying it, the researchers needed a way around the limitations of conventional optical trapping.
The promise of plasmonics

Dionne says that the most promising method of moving tiny particles with light relies on plasmonics, a technology that takes advantage of the optical and electronic properties of metals. A strong conductor like silver or gold holds its electrons weakly, giving them freedom to move around near the metal's surface.

When light waves interact with these mobile electrons, they move in what Dionne describes as "a very well-defined, intricate dance," scattering and sculpting the light into electromagnetic waves called plasmon-polaritons. These oscillations have a very short wavelength compared to visible light, enabling them to trap small specimens more tightly.

Dionne and Saleh applied plasmonic principles to design a new aperture that focuses light more effectively. The aperture is structured much like the coaxial cables that transmit television signals, Saleh said. A nanoscale tube of silver is coated in a thin layer of silicon dioxide, and those two layers are wrapped in a second outer layer of silver. When light shines through the silicon dioxide ring, it creates plasmons at the interface where the silver and silicon dioxide meet. The plasmons travel along aperture and emerge on the other end as a powerful, concentrated beam of light.

The Stanford device is not the first plasmonic trap, but it promises to trap the smallest specimens recorded to date. Saleh and Dionne have theoretically shown that their design can trap particles as small as 2 nanometers. With further improvements, their design could even be used to optically trap molecules even smaller.
An optical multi-tool

As nanoscale tools go, this new optical trap would be quite a versatile gadget. While the researchers first envisioned it in the context of materials science, its potential applications span many other fields including biology, pharmacology, and genomics.

Dionne said she would first like to trap a single protein, and try to unravel its twisted structure using visible light alone. Dionne points out that the beam of light could also be used to exert a strong pulling force on stem cells, which has been shown to change how the these important building blocks differentiate into various kinds of cells. Saleh, on the other hand, is particularly excited about moving and stacking tiny particles to explore their attractive forces and create new, "bottom-up" materials and devices.

All this is down the road, however. In the meantime, Saleh is working on turning the design into reality. He hopes to have a prototype by early 2013.

Funding for this research was provided by a Stanford Terman fellowship, an AFOSR Young Investigator Grant and a NSF Career Award.

Kelly Servick is a science-writing intern for the Stanford University School of Engineering.

####

For more information, please click here

Contacts:
Andrew Myers

650-736-2245

Copyright © Stanford School of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Govt.-Legislation/Regulation/Funding/Policy

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

QD Vision Wins Prestigious Presidential Green Chemistry Challenge Award from the U.S. Environmental Protection Agency October 16th, 2014

Nanomedicine

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Tuning light to kill deep cancer tumors: Nanoparticles developed at UMass Medical School advance potential clinical application for photodynamic therapy October 15th, 2014

Discoveries

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Plastic nanoparticles also harm freshwater organisms October 18th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanotechnology Improves Quality of Anti-Corrosive Coatings October 17th, 2014

Announcements

HP Supercomputer at NREL Garners Top Honor October 19th, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

Tools

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Nanotronics Imaging Releases nSPECŪ 3D, Powerful Microscope That Captures 3D Images at Nanoscale, in Lightning Speed: Company Unveils Design at American Chemical Society 2014 International Elastomer Conference October 14th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Nanobiotechnology

Scientists Map Key Moment in Assembly of DNA-Splitting Molecular Machine: Crucial steps and surprising structures revealed in the genesis of the enzyme that divides the DNA double helix during cell replication October 15th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

Charged graphene gives DNA a stage to perform molecular gymnastics October 9th, 2014

Nanoparticles get a magnetic handle: New method produces particles that can glow with color-coded light and be manipulated with magnets October 9th, 2014

Photonics/Optics/Lasers

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

New VDMA Association "Electronics, Micro and Nano Technologies" founded: Inaugural Meeting in Frankfurt/Main, Germany October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE