Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Large pores: KIT researchers develop new method to produce metal-organic frameworks

This shows the structure of SURMOF 2 metal-organic frameworks: The pore size may reach up to three times three nanometers.

Credit: Figure: Dr. Jinxuan Liu, IFG
This shows the structure of SURMOF 2 metal-organic frameworks: The pore size may reach up to three times three nanometers.

Credit: Figure: Dr. Jinxuan Liu, IFG

Abstract:
Researchers of the KIT Institute of Functional Interfaces (IFG), Jacobs University Bremen, and other institutions have developed a new method to produce metal-organic frameworks (MOFs). By means of the so-called liquid-phase epitaxy, the scientists succeeded in producing a new class of MOFs with a pore size never reached before. These frameworks open up interesting applications in medicine, optics, and photonics. The new class of MOFs, called "SURMOF 2", is presented in the "Nature Scientific Reports" journal.

Large pores: KIT researchers develop new method to produce metal-organic frameworks

Germany | Posted on December 5th, 2012

Metal-organic frameworks (MOFs) can store nanoscaled objects and make them available for various applications. For this reason, they are of particular interest in many research areas, including materials sciences, biology, and medicine. MOFs are highly ordered molecular systems, consisting of metal nodes and organic rods. The pores in these frameworks are freely accessible. MOFs are used in powder form to store hydrogen and other small molecules, such as carbon dioxide or methane. For more complex applications, such as the storage and subsequent release of antibiotics, MOF coatings of higher mechanical loadability are required.

At the KIT Institute of Functional Interfaces (IFG), the team of the head of institute Professor Christof Wöll is working on new methods for the production of MOFs. They make the MOF structures grow epitaxially, i.e. in layer-by-layer scheme, on the surface of substrates (SURMOFs - Surface-mounted Metal-organic Frameworks). In this way, the size and shape of the pores as well as their chemical functionality can be adjusted to the planned application. A special method developed by the IFG, the so-called liquid-phase epitaxy (LPE), allows for the production of framework structures that cannot be generated by conventional wet chemical methods. Detailed theoretical analysis by the group of Professor Heine of Jacobs University Bremen revealed that the interactions between the organic rods are responsible for the stability of these frameworks with large pores. In the Nature Scientific Reports journal, the researchers from IFG and the Institute of Organic Chemistry (IOC) of KIT, Jacobs University Bremen, and other institutions in Mainz, Bielefeld, and Thuwal/Saudi Arabia present a series of structurally related, highly symmetric frameworks with very large pores, which were produced by means of the LPE method.

These novel MOFs that are referred to as "SURMOFs 2" are produced by synthesizing various special organic molecules of variable lengths. The pore size of the new metal-organic frameworks is three times three nanometers. Hence, the pores have sufficient space for small proteins. Now, the researchers are working on increasing the length of the organic rods in order to be able to store even larger proteins and possibly also metallic nanoparticles in the next step. This will allow for interesting applications in optics and photonics.

"We think that SURMOFs 2 will have considerable potentials as optical materials. In the next step, we plan to produce heterolayers, in which different materials will be stacked on top of each other," explains Professor Christof Wöll from the IFG. "The application potential of metal-organic frameworks can hardly be predicted at the moment. MOFs are composed structures. Chemists have learned how the components may be combined in a framework. Now, it will be important to use the variety of molecules known in chemistry to develop new materials with new application potentials that might revolutionize catalysis, sensor technology, or logical storage materials. Computer simulations are ideal to determine the components to be used for producing frameworks with optimum properties at the laboratory," explains Professor Thomas Heine from Jacobs University Bremen.

Jinxuan Liu, Binit Lukose, Osama Shekhah, Hasan Kemal Arslan, Peter Weidler, Hartmut Gliemann, Stefan Bräse, Sylvain Grosjean, Adelheid Godt, Xinliang Feng, Klaus Müllen, Ioan Bogdan Magdau, Thomas Heine, Christof Wöll: A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy. In: Nature Scientific Reports 2, Article number: 921 bzw. doi: 10.1038/srep00921 www.nature.com/srep/2012/121204/srep00921/full/srep00921.html

####

About Helmholtz Association of German Research Centres
Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.

For more information, please click here

Contacts:
Monika Landgraf

49-721-608-47414

Copyright © Helmholtz Association of German Research Centres

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Laboratories

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Nanomedicine

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Discoveries

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Materials/Metamaterials

Thinnest feasible membrane produced April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Industrial Nanotech, Inc. Lands First Major Order from Pemex, Mexico’s State-Owned Oil and Gas Company April 14th, 2014

Announcements

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Nanobiotechnology

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

In latest generation of tiny biosensors, size isn't everything: UCLA researchers overturn conventional wisdom on nanowire-based diagnostic devices April 11th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Photonics/Optics/Lasers

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Lumerical files a provisional patent that extends the standard eigenmode expansion propagation technique to better address waveguide component design. Lumerical’s EME propagation tool will address a wide set of waveguide applications in silicon photonics and integrated optics April 16th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE