Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Large pores: KIT researchers develop new method to produce metal-organic frameworks

This shows the structure of SURMOF 2 metal-organic frameworks: The pore size may reach up to three times three nanometers.

Credit: Figure: Dr. Jinxuan Liu, IFG
This shows the structure of SURMOF 2 metal-organic frameworks: The pore size may reach up to three times three nanometers.

Credit: Figure: Dr. Jinxuan Liu, IFG

Abstract:
Researchers of the KIT Institute of Functional Interfaces (IFG), Jacobs University Bremen, and other institutions have developed a new method to produce metal-organic frameworks (MOFs). By means of the so-called liquid-phase epitaxy, the scientists succeeded in producing a new class of MOFs with a pore size never reached before. These frameworks open up interesting applications in medicine, optics, and photonics. The new class of MOFs, called "SURMOF 2", is presented in the "Nature Scientific Reports" journal.

Large pores: KIT researchers develop new method to produce metal-organic frameworks

Germany | Posted on December 5th, 2012

Metal-organic frameworks (MOFs) can store nanoscaled objects and make them available for various applications. For this reason, they are of particular interest in many research areas, including materials sciences, biology, and medicine. MOFs are highly ordered molecular systems, consisting of metal nodes and organic rods. The pores in these frameworks are freely accessible. MOFs are used in powder form to store hydrogen and other small molecules, such as carbon dioxide or methane. For more complex applications, such as the storage and subsequent release of antibiotics, MOF coatings of higher mechanical loadability are required.

At the KIT Institute of Functional Interfaces (IFG), the team of the head of institute Professor Christof Wöll is working on new methods for the production of MOFs. They make the MOF structures grow epitaxially, i.e. in layer-by-layer scheme, on the surface of substrates (SURMOFs - Surface-mounted Metal-organic Frameworks). In this way, the size and shape of the pores as well as their chemical functionality can be adjusted to the planned application. A special method developed by the IFG, the so-called liquid-phase epitaxy (LPE), allows for the production of framework structures that cannot be generated by conventional wet chemical methods. Detailed theoretical analysis by the group of Professor Heine of Jacobs University Bremen revealed that the interactions between the organic rods are responsible for the stability of these frameworks with large pores. In the Nature Scientific Reports journal, the researchers from IFG and the Institute of Organic Chemistry (IOC) of KIT, Jacobs University Bremen, and other institutions in Mainz, Bielefeld, and Thuwal/Saudi Arabia present a series of structurally related, highly symmetric frameworks with very large pores, which were produced by means of the LPE method.

These novel MOFs that are referred to as "SURMOFs 2" are produced by synthesizing various special organic molecules of variable lengths. The pore size of the new metal-organic frameworks is three times three nanometers. Hence, the pores have sufficient space for small proteins. Now, the researchers are working on increasing the length of the organic rods in order to be able to store even larger proteins and possibly also metallic nanoparticles in the next step. This will allow for interesting applications in optics and photonics.

"We think that SURMOFs 2 will have considerable potentials as optical materials. In the next step, we plan to produce heterolayers, in which different materials will be stacked on top of each other," explains Professor Christof Wöll from the IFG. "The application potential of metal-organic frameworks can hardly be predicted at the moment. MOFs are composed structures. Chemists have learned how the components may be combined in a framework. Now, it will be important to use the variety of molecules known in chemistry to develop new materials with new application potentials that might revolutionize catalysis, sensor technology, or logical storage materials. Computer simulations are ideal to determine the components to be used for producing frameworks with optimum properties at the laboratory," explains Professor Thomas Heine from Jacobs University Bremen.

Jinxuan Liu, Binit Lukose, Osama Shekhah, Hasan Kemal Arslan, Peter Weidler, Hartmut Gliemann, Stefan Bräse, Sylvain Grosjean, Adelheid Godt, Xinliang Feng, Klaus Müllen, Ioan Bogdan Magdau, Thomas Heine, Christof Wöll: A novel series of isoreticular metal organic frameworks: realizing metastable structures by liquid phase epitaxy. In: Nature Scientific Reports 2, Article number: 921 bzw. doi: 10.1038/srep00921 www.nature.com/srep/2012/121204/srep00921/full/srep00921.html

####

About Helmholtz Association of German Research Centres
Karlsruhe Institute of Technology (KIT) is a public corporation according to the legislation of the state of Baden-Württemberg. It fulfills the mission of a university and the mission of a national research center of the Helmholtz Association. KIT focuses on a knowledge triangle that links the tasks of research, teaching, and innovation.

For more information, please click here

Contacts:
Monika Landgraf

49-721-608-47414

Copyright © Helmholtz Association of German Research Centres

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Photonics/Optics/Lasers

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project