Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Switching with a few photons for quantum computing

Provided/Gaeta Lab
Electron microscope photo of a cross-section of photonic bandgap fiber. Tiny glass tubes surrounding the core bend light waves in such a way that they interfere and cancel out, focusing all the energy of a beam into the hollow core.
Provided/Gaeta Lab

Electron microscope photo of a cross-section of photonic bandgap fiber. Tiny glass tubes surrounding the core bend light waves in such a way that they interfere and cancel out, focusing all the energy of a beam into the hollow core.

Abstract:
Quantum computing, where bits of information, or "qubits," are represented by the state of single atomic particles or photons of light, won't be of much use unless we can read the results. Cornell researchers have taken a step in that direction with a device that can measure the presence of just a few photons without disturbing them.

Switching with a few photons for quantum computing

Ithaca, NY | Posted on December 5th, 2012

The experiment mixes a strong beam of light with a very weak "signal" beam consisting of fewer than 20 photons in such a way that the phase -- a measure of the timing of a wave -- of the strong beam changes in proportion to the number of photons in the signal.

"Ideally what people want is to be able to measure the presence of a single photon, without destroying it," said Alex Gaeta, professor and director of applied and engineering physics. "Nevertheless, there are interesting quantum information algorithms you can do with just a few photons." Switching a light beam with a single photon would be the equivalent of a "gate" in a conventional electronic computer, where a 1 or 0 input switches the output between 1 and 0. In future applications this could communicate the state of a qubit in a quantum computer, or the photons themselves might be the qubits.

The device created by Gaeta's research group makes use of a new type of optical fiber known as photonic bandgap fiber, which consists of a hollow core surrounded by a honeycomb of tiny glass tubes. The honeycomb acts as a diffraction grating that bends light in such a way that all wavelengths are canceled except for a narrow gap at the fundamental wavelength of the light to be transported, confining that light to an intense beam in the core. The advantage over conventional glass fiber is that the core can be filled with a gas.

In experiments reported in the Dec. 2 online issue of the journal Nature Photonics, the researchers filled the core of a fiber about 9 centimeters long with rubidium vapor to exploit what's known as the Kerr effect, in which the oscillating electromagnetic fields in a beam of light interact with the electromagnetic fields of the electrons in atoms to change the refractive index of the medium, which changes the way light is affected when it passes through. The weak signal beam changes the refractive index of the rubidium vapor enough to change the phase of the strong beam, which can be measured after the beam emerges from the fiber. The process is "nondestructive" in that the number of photons in the signal beam is not affected.

Varying the intensity of the signal, and thereby the number of photons, the researchers measured a phase change of about .3 milliradians (a unit of angle) per photon, suggesting that eventually single photons could be detected, and that such a device could be used to count photons. Varying the length of pulses of the strong beam showed that the system could respond in less than 5 nanoseconds, indicating that the strong beam could be modulated at frequencies up to 50 MHz.

Similar measurements have been performed in apparatus cooled to cryogenic temperatures, the researchers noted, but this is the first time it has been done at room temperature.

The research was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Media Contact:
John Carberry
(607) 255-5553


Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Govt.-Legislation/Regulation/Funding/Policy

Ultrathin device harvests electricity from human motion July 23rd, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Here's a tip: Indented cement shows unique properties: Rice University models reveal nanoindentation can benefit crystals in concrete July 20th, 2017

Quantum Computing

Into the quantum world with a tennis racket: Classical mechanics helps control quantum computers July 6th, 2017

Microsoft, Purdue collaborate to advance quantum computing May 30th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Discoveries

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

The first light atomic nucleus with a second face July 20th, 2017

Announcements

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Photonics/Optics/Lasers

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project