Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nature Materials Study: Boosting Heat Transfer With Nanoglue: Interdisciplinary Study From Rensselaer Polytechnic Institute Demonstrates New Method for Significantly Increasing Heat Transfer Rate Across Two Different Materials

Abstract:
A team of interdisciplinary researchers at Rensselaer Polytechnic Institute has developed a new method for significantly increasing the heat transfer rate across two different materials. Results of the team's study, published in the journal Nature Materials, could enable new advances in cooling computer chips and lighting-emitting diode (LED) devices, collecting solar power, harvesting waste heat, and other applications.

Nature Materials Study: Boosting Heat Transfer With Nanoglue: Interdisciplinary Study From Rensselaer Polytechnic Institute Demonstrates New Method for Significantly Increasing Heat Transfer Rate Across Two Different Materials

Troy, NY | Posted on December 4th, 2012

By sandwiching a layer of ultrathin "nanoglue" between copper and silica, the research team demonstrated a four-fold increase in thermal conductance at the interface between the two materials. Less than a nanometer—or one billionth of a meter—thick, the nanoglue is a layer of molecules that form strong links with the copper (a metal) and the silica (a ceramic), which otherwise would not stick together well. This kind of nanomolecular locking improves adhesion, and also helps to sync up the vibrations of atoms that make up the two materials which, in turn, facilitates more efficient transport of heat particles called phonons. Beyond copper and silica, the research team has demonstrated their approach works with other metal-ceramic interfaces.

Heat transfer is a critical aspect of many different technologies. As computer chips grow smaller and more complex, manufacturers are constantly in search of new and better means for removing excess heat from semiconductor devices to boost reliability and performance. With photovoltaic devices, for example, better heat transfer leads to more efficient conversion of sunlight to electrical power. LED makers are also looking for ways to increase efficiency by reducing the percentage of input power lost as heat. Ganapati Ramanath, professor in the Department of Materials Science and Engineering at Rensselaer, who led the new study, said the ability to enhance and optimize interfacial thermal conductance should lead to new innovations in these and other applications.

"Interfaces between different materials are often heat-flow bottlenecks due to stifled phonon transport. Inserting a third material usually only makes things worse because of an additional interface created," Ramanath said. "However, our method of introducing an ultrathin nanolayer of organic molecules that strongly bond with both the materials at the interface gives rise to multi-fold increases in interfacial thermal conductance, contrary to poor heat conduction seen at inorganic-organic interfaces. This method to tune thermal conductance by controlling adhesion using an organic nanolayer works for multiple materials systems, and offers a new means for atomic- and molecular-level manipulation of multiple properties at different types of materials interfaces. Also, it's cool to be able to do this rather unobtrusively by the simple method of self-assembly of a single layer of molecules."

Results of the new study, titled "Bonding-induced thermal conductance enhancement at inorganic heterointerfaces using nanomolecular monolayers," were published online last week by Nature Materials, and will appear in an upcoming print edition of the journal. The study may be viewed online at: go.nature.com/3LLeYP

The research team used a combination of experiments and theory to validate their findings.

"Our study establishes the correlation between interfacial bond strength and thermal conductance, which serves to underpin new theoretical descriptions and open up new ways to control interfacial heat transfer," said co-author Pawel Keblinski, professor in the Department of Materials Science and Engineering at Rensselaer.

"It is truly remarkable that a single molecular layer can bring about such a large improvement in the thermal properties of interfaces by forming strong interfacial bonds. This would be useful for controlling heat transport for many applications in electronics, lighting, and energy generation," said co-author Masashi Yamaguchi, associate professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer.

This study was funded with support from the National Science Foundation (NSF).

"The overarching goal of Professor Ramanath's NSF-sponsored research is to elucidate, using first-principles-based models, the effects of molecular chemistry, chemical environment, interface topography, and thermo-mechanical cycling on the thermal conductance of metal-ceramic interfaces modified with molecular nanolayers," said Clark V. Cooper, senior advisor for science at the NSF Directorate for Mathematical and Physical Sciences, who formerly held the post of program director for Materials and Surface Engineering. "Consistent with NSF's mission, the focus of his research is to advance fundamental science, but the potential societal benefits of the research are enormous."

"This is a fascinating example of the interplay between the physical, chemical, and mechanical properties working in unison at the nanoscale to determine the heat transport characteristics at dissimilar metal-ceramic interfaces," said Anupama B. Kaul, a program director for the Division of Electrical, Communications, and Cyber Systems at the NSF Directorate for Engineering. "The fact that the organic nanomolecular layer is just a monolayer in thickness and yet has such an important influence on the thermal characteristics is truly remarkable. Dr. Ramanath's results should be particularly valuable in nanoelectronics where heat management due to shrinking device dimensions continues to be an area of active research."

Along with Ramanath, Keblinski, and Yamaguchi, co-authors of the paper are Rensselaer materials science graduate students Peter O'Brien, Sergei Shenogin, and Philippe K. Chow; Rensselaer physics graduate student Jianxiun Liu; and Danielle Laurencin and P. Hubert Mutin of the Institut Charles Gerhardt Montpellier and Université Montpellier in France.

####

For more information, please click here

Contacts:
Michael Mullaney
Phone: (518) 276-6161

Copyright © Rensselaer Polytechnic Institute (RPI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nature Materials Study: Quick-Cooking Nanomaterials in a $40 Microwave Oven To Make Tomorrow’s Solid-State Air Conditioners and Refrigerators:

Inexpensive “Nanoglue” Can Bond Nearly Anything Together:

“Nanosculpture” Could Enable New Types of Heat Pumps and Energy Converters:

Strengthening Fluids With Nanoparticles:

Faculty Home Page:

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Display technology/LEDs/SS Lighting/OLEDs

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

Silicon nanoparticles instead of expensive semiconductors: Within an international collaboration, physicists of the Moscow State University replace expensive semiconductors with affordable silicon nanoparticles for display production September 9th, 2016

Low-cost and defect-free graphene: FAU researchers make key break-through September 7th, 2016

Physics

New breed of optical soliton wave discovered September 9th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Location matters in the self-assembly of nanoclusters: Iowa State University scientists have developed a new formulation to explain an aspect of the self-assembly of nanoclusters on surfaces that has broad applications for nanotechnology September 8th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Chip Technology

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Discoveries

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Materials/Metamaterials

Chains of nanogold – forged with atomic precision September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Containing our 'electromagnetic pollution': MXene can protect mobile devices from electromagnetic interference September 13th, 2016

New material to revolutionize water proofing September 12th, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Energy

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

Solar/Photovoltaic

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

NREL Discovery Creates Future Opportunity in Quantum Computing: Research into perovskites looks beyond material’s usage for efficient solar cells September 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic