Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Steps towards filming atoms dancing

An electromagnetic field accelerates photoelectrons emitted from neon atoms irradiated by an X-ray free-electron laser

Jörg Harms/MPSD at CFEL
An electromagnetic field accelerates photoelectrons emitted from neon atoms irradiated by an X-ray free-electron laser

Jörg Harms/MPSD at CFEL

Abstract:
With their ultra short X-ray flashes, free-electron lasers offer the opportunity to film atoms in motion in complicated molecules and in the course of chemical reactions. However, for monitoring this motion, the arrival time and the temporal profile of the pulses which periodically illuminate the system, must be precisely known. An international team of scientists has now developed a measurement technique that provides complete temporal characterization of individual FEL (free-electron laser) pulses at DESY's soft-X-ray free-electron laser, named FLASH. The team, led by Adrian Cavalieri from the Center for Free-Electron Laser Science (CFEL) in Hamburg, was able to measure the temporal profile of each X-ray pulse with femtosecond precision (a femtosecond is a quadrillionth of a second). The Ikerbasque Research Professor Andrey Kazansky from Donostia International Physics Center (DIPC) and the University of the Basque Country (UPV/EHU), as well as Nikolay Kabachnik from the Lomonosov State University in Moscow who is a regular visiting fellow at DIPC, were members of the team. The technique developed in this investigation can be implemented at any of the world´s X-ray free-electron lasers, ultimately allowing for most effective utilization of these sources. The results are published in the current issue of the scientific journal Nature Photonics.

Steps towards filming atoms dancing

Usurbil, Spain | Posted on December 4th, 2012

X-ray pulses delivered by free-electron lasers provide unique research opportunities, because the pulses are ultra-intense and ultra-short. At FELs trillions of X-ray photons are packed within a single burst - or pulse - which lasts for only several tens of femtoseconds, or even less. However, the precise arrival time and even the temporal profile of the FEL pulse can change dramatically from one pulse to the next. Therefore, to use the FEL to "film" ultrafast dynamical processes, the arrival time of each pulse must be measured to reorder the individual frames or snapshots captured with each individual FEL pulse.

Provided with accurate timing information, femtosecond FEL X-ray pulses are short enough to study atoms in motion, chemical reactions, and phase transitions in materials with time resolution on the femtosecond scale.

With simultaneous measurement of the FEL X-ray pulse profile, it will be possible to go even further, to explore processes that evolve within the X-ray exposure. On these timescales the motion of electrons and electronic state dynamics become significant. Electronic dynamics drive damage processes in biomolecules, which may destroy them before they can be recorded in a crystal clear image.

For their measurements, the team adapted a technique used in attosecond science called "photoelectron streaking" (an attosecond is a thousandth of a femtosecond). Andrey Kazansky, Ikerbasque research Professor at DIPC and UPV/EHU, explains that "the streaking technique permits recording temporal profiles of varying light signals by creating photoelectron bursts and measuring the energy distribution of these electrons". A photoelectron is the electron emitted from matter (gas, solid, liquids) as a consequence of the absorption of a high energy photon. In other words, is the electron that has been kicked out by a photon.

By taking advantage of the ultra-high intensities available at FELs the researchers were able to perform the streaking measurement on a single-shot basis at FLASH. For this, the X-ray flashes were shot through neon gas on their way to their target. Each X-ray pulse ejects a burst of photoelectrons from the noble gas and it turns out that the temporal profile of the photoelectron bursts is a replica of the FEL pulse that ejected them.

Then, a very intense electromagnetic field is used to accelerate or decelerate the photoelectrons, depending on the exact instant of their ejection. The strength of this effect is measured and combining all the information appropriately the temporal profile and arrival time of the individual X-ray pulses from FEL can be obtained with a precision of about 5 femtoseconds.

"Simultaneous measurement of the arrival time and pulse profile, independent of all other FEL parameters, is the key to this technique," explains Adrian Cavalieri, who is a professor at the University of Hamburg and a group leader in the Max Planck Research Department for Structural Dynamics (MPSD). Until now, no other measurement has provided this complete timing information - yet it is exactly this information that will be crucial for future application of these extremely perspective X-ray light sources.

The FEL pulse characterization measurements presented by the team are made without affecting the FEL beam - only a negligible number of photons is lost for creating photoelectrons. Therefore, they can be applied in any experiment at almost any wavelength. In the immediate future, laser-driven streaking will be used to monitor and maintain the FEL pulse duration at FLASH to study a wide variety of atomic, molecular and solid-state systems. For further experiments, the researchers plan to use these high precision measurements as critical feedback for tailoring and manipulating the X-ray pulse profile.

####

For more information, please click here

Contacts:
Aitziber Lasa

34-943-363-040

Nora Gonzalez
Donostia International Physics Center (DIPC)

(+34) 943 01 5624

Copyright © Elhuyar Fundazioa

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Internet reference dx.doi.org/10.1038/nphoton.2012.276

Related News Press

News and information

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Imaging

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Physics

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Discoveries

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Announcements

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Tools

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Photonics/Optics/Lasers

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project