Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > How 'transparent' is graphene? MIT researchers find that adding a coating of graphene has little effect on how a surface interacts with liquids - except in extreme cases

A simulated water droplet on a sheet of suspended graphene.
Image: Chih-Jen Shih
A simulated water droplet on a sheet of suspended graphene.

Image: Chih-Jen Shih

Abstract:
The amazing electrical, optical and strength properties of graphene, a single-atom-thick layer of carbon, have been extensively researched over the last decade. Recently, the material has been studied as a coating that might confer electrical conductivity while maintaining other properties of the underlying material.

How 'transparent' is graphene? MIT researchers find that adding a coating of graphene has little effect on how a surface interacts with liquids - except in extreme cases

Cambridge, MA | Posted on December 3rd, 2012

But the "transparency" of such a graphene coating to wetting a measure of the degree to which liquids spread out or bead up on a surface is not as absolute as some researchers had thought. New research at MIT shows that for materials with intermediate wettability, graphene does preserve the properties of the underlying material. But for more extreme cases superhydrophobic surfaces, which intensely repel water, or superhydrophilic ones, which cause water to spread out an added layer of graphene does significantly change the way coated materials behave.

That's important, because these extreme cases are generally of greatest interest. For example, coating a superhydrophobic material with graphene was seen as a possible way of making electronic circuits that would be protected from short-circuiting and corrosion in water. But it's not quite that simple, the new research shows.

The findings were recently published in the journal Physical Review Letters by professors Daniel Blankschtein and Michael Strano, graduate student Chih-Jeh Shih, and three other MIT postdocs and students.

Blankschtein, the Herman P. Meissner '29 Professor of Chemical Engineering, has studied wetting properties for a long time. He had not previously examined graphene, but decided to explore its wettability now that it's a material of great interest to researchers.

Because graphene's transparency to wettability turned out not to be perfect, Blankschtein says, "this finding may be viewed as a negative result." But, he adds, "it is nevertheless extremely important to the scientific community, because it [shows] what can actually be accomplished in practice."

Most electrically conductive materials, he points out, are hydrophilic: Water spreads readily on them, thoroughly wetting the surface. "On the other hand," he says, "for many electronic and military applications, it is important to fabricate hydrophobic, electrically conductive surfaces." And while graphene's transparency to wettability is not perfect, it may still be good enough for such applications, he says.

This research, which included both theoretical modeling and experimental confirmation, shows that by depositing a large graphene sheet, grown by a process called chemical vapor deposition, on another material's surface, "it would be possible to induce electrical conductivity on the surface, while partially preserving the desired surface wetting behavior," Blankschtein says. In fact, he adds, the contact angle of such a surface the measure of how well it prevents wetting "is believed to be one of the highest attainable on a flat, electrically conductive surface to date."

Shih, the lead author of the paper, says, "We have demonstrated that the wettability of a transparent, graphene-coated surface can be manipulated without undermining its thermal/electrical conductivity." That's useful because "in general, conductive surfaces have very high wettability due to their high surface tension, and it is generally very challenging to produce a thermally/electrically conductive surface with tunable wettability" wettability that can be controlled almost at will.

The team describes this partial transmission of the underlying characteristics as "translucency," rather than transparency, of wettability.

By selecting a particular combination of an underlying material with a graphene coating, different combinations of electrical, optical and wetting characteristics can be achieved, Shih says: "People can control the wetting properties of the substrate this breakthrough successfully decouples the conductivity and wettability of a material."

What's more, this opens up new possibilities for practical devices, because the materials involved are already widely used in industry, Shih says: "Due to its compatibility with today's semiconductor processes, many exciting opportunities may be pursued in the areas of microelectronics, nanoscale heat transfer and microfluidic devices to simultaneously engineer desired wettability, heat transfer and electronic transport."

Blankschtein emphasizes that in addition to the potential applications, "I'm excited about this from a fundamental point of view." It shows, he says, that "you can't assume that you can just take a substrate and drop graphene on it without perturbing the wetting behavior." By understanding this complex behavior, "we can learn how to take advantage of that."

The work, which also involved MIT postdocs Qing Hua Wang, Shangchao Lin and Zhong Jin and graduate student Kyoo-Chul Park, was supported by the Office of Naval Research, the National Science Foundation and MIT's Institute for Soldier Nanotechnology.

####

For more information, please click here

Contacts:
Caroline McCall
MIT Media Relations

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Graphene

Graphene reduces wear of alumina ceramic March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Haydale Announce Dedicated Graphene Inks Manufacturing Capability March 25th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

Microfluidics/Nanofluidics

Square ice filling for a graphene sandwich March 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Chip Technology

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

Discoveries

A first glimpse inside a macroscopic quantum state March 28th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Military

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE