Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > How 'transparent' is graphene? MIT researchers find that adding a coating of graphene has little effect on how a surface interacts with liquids - except in extreme cases

A simulated water droplet on a sheet of suspended graphene.
Image: Chih-Jen Shih
A simulated water droplet on a sheet of suspended graphene.

Image: Chih-Jen Shih

Abstract:
The amazing electrical, optical and strength properties of graphene, a single-atom-thick layer of carbon, have been extensively researched over the last decade. Recently, the material has been studied as a coating that might confer electrical conductivity while maintaining other properties of the underlying material.

How 'transparent' is graphene? MIT researchers find that adding a coating of graphene has little effect on how a surface interacts with liquids - except in extreme cases

Cambridge, MA | Posted on December 3rd, 2012

But the "transparency" of such a graphene coating to wetting — a measure of the degree to which liquids spread out or bead up on a surface — is not as absolute as some researchers had thought. New research at MIT shows that for materials with intermediate wettability, graphene does preserve the properties of the underlying material. But for more extreme cases — superhydrophobic surfaces, which intensely repel water, or superhydrophilic ones, which cause water to spread out — an added layer of graphene does significantly change the way coated materials behave.

That's important, because these extreme cases are generally of greatest interest. For example, coating a superhydrophobic material with graphene was seen as a possible way of making electronic circuits that would be protected from short-circuiting and corrosion in water. But it's not quite that simple, the new research shows.

The findings were recently published in the journal Physical Review Letters by professors Daniel Blankschtein and Michael Strano, graduate student Chih-Jeh Shih, and three other MIT postdocs and students.

Blankschtein, the Herman P. Meissner '29 Professor of Chemical Engineering, has studied wetting properties for a long time. He had not previously examined graphene, but decided to explore its wettability now that it's a material of great interest to researchers.

Because graphene's transparency to wettability turned out not to be perfect, Blankschtein says, "this finding may be viewed as a negative result." But, he adds, "it is nevertheless extremely important to the scientific community, because it [shows] what can actually be accomplished in practice."

Most electrically conductive materials, he points out, are hydrophilic: Water spreads readily on them, thoroughly wetting the surface. "On the other hand," he says, "for many electronic and military applications, it is important to fabricate hydrophobic, electrically conductive surfaces." And while graphene's transparency to wettability is not perfect, it may still be good enough for such applications, he says.

This research, which included both theoretical modeling and experimental confirmation, shows that by depositing a large graphene sheet, grown by a process called chemical vapor deposition, on another material's surface, "it would be possible to induce electrical conductivity on the surface, while partially preserving the desired surface wetting behavior," Blankschtein says. In fact, he adds, the contact angle of such a surface — the measure of how well it prevents wetting — "is believed to be one of the highest attainable on a flat, electrically conductive surface to date."

Shih, the lead author of the paper, says, "We have demonstrated that the wettability of a transparent, graphene-coated surface can be manipulated without undermining its thermal/electrical conductivity." That's useful because "in general, conductive surfaces have very high wettability due to their high surface tension, and it is generally very challenging to produce a thermally/electrically conductive surface with tunable wettability" — wettability that can be controlled almost at will.

The team describes this partial transmission of the underlying characteristics as "translucency," rather than transparency, of wettability.

By selecting a particular combination of an underlying material with a graphene coating, different combinations of electrical, optical and wetting characteristics can be achieved, Shih says: "People can control the wetting properties of the substrate … this breakthrough successfully decouples the conductivity and wettability of a material."

What's more, this opens up new possibilities for practical devices, because the materials involved are already widely used in industry, Shih says: "Due to its compatibility with today's semiconductor processes, many exciting opportunities may be pursued in the areas of microelectronics, nanoscale heat transfer and microfluidic devices — to simultaneously engineer desired wettability, heat transfer and electronic transport."

Blankschtein emphasizes that in addition to the potential applications, "I'm excited about this from a fundamental point of view." It shows, he says, that "you can't assume that you can just take a substrate and drop graphene on it without perturbing the wetting behavior." By understanding this complex behavior, "we can learn how to take advantage of that."

The work, which also involved MIT postdocs Qing Hua Wang, Shangchao Lin and Zhong Jin and graduate student Kyoo-Chul Park, was supported by the Office of Naval Research, the National Science Foundation and MIT's Institute for Soldier Nanotechnology.

####

For more information, please click here

Contacts:
Caroline McCall
MIT Media Relations

Copyright © Massachusetts Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Microfluidics/Nanofluidics

The mysterious 'action at a distance' between liquid containers November 26th, 2014

Graphene

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Researchers engineer improvements of technology used in digital memory November 24th, 2014

Graphene/nanotube hybrid benefits flexible solar cells: Rice University labs create novel electrode for dye-sensitized cells November 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Chip Technology

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Discoveries

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Military

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Two sensors in one: Nanoparticles that enable both MRI and fluorescent imaging could monitor cancer, other diseases November 18th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE