Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Experiments bolster theory of how electrons cool in graphene

Matt Graham
An illustration of how a heated electron cools in graphene. The electron slowly cools by emitting regular phonons, illustrated by zigzags down a Dirac Cone (a visualization of graphene's electronic band structure). When the electron hits a defect, it bounces off the lattice - a "supercollision" - which speeds up the cooling process.
Matt Graham

An illustration of how a heated electron cools in graphene. The electron slowly cools by emitting regular phonons, illustrated by zigzags down a Dirac Cone (a visualization of graphene's electronic band structure). When the electron hits a defect, it bounces off the lattice - a "supercollision" - which speeds up the cooling process.

Abstract:
It's a basic tenet of physics that scientists are trying to explain in graphene, single-atom thick sheets of carbon: When electrons are excited, or heated, how quickly do they relax, or cool?

Experiments bolster theory of how electrons cool in graphene

Ithaca, NY | Posted on December 3rd, 2012

A research team supported by the Kavli Institute at Cornell for Nanoscale Science has shed some light on the topic through the first known direct measurements of hot electrons cooling down in graphene.

The team, which published its findings online Dec. 2 in the journal Nature Physics, includes lead researcher Paul McEuen, the Kavli Institute director and Goldwin Smith Professor of Physics; first author Matt Graham, a Kavli postdoctoral fellow; and co-authors Jiwoong Park, assistant professor of chemistry and chemical biology and Kavli member; Dan Ralph, Horace White Professor of Physics and Kavli member; and Su-Fei Shen, Ralph's former graduate student.

When electrons travel through graphene, they create a quantum lattice vibration, called a phonon. In doing so, the difference in energy the electron emits must equal the amount gained by the phonon; this is the "cooling" that happens as the system is returning to its equilibrium state, and this movement of electrons is at the heart of understanding how electronic devices work.

The new Cornell experiment supports a previous theory that electrons in graphene experience "supercollisions" as they cool -- they bump into defects in the crystal lattice, imparting their momentum to the defects, thereby making the cooling process much faster than if the graphene were a perfectly repeating crystal.

"The remarkable thing about the theory was it predicted all kinds of details, and it got it all right," McEuen said.

Watching electrons move through graphene took some novel experimental legwork. Graham and colleagues conceived a setup in which they shot very short laser pulses -- about 100 femtoseconds apart -- at a piece of conventionally grown graphene.

They observed the temperature of the graphene as it heated and cooled at a p-n junction, which is the interface at which electrons travel between two semiconductors. By tracking the magnitude of the current passing through the junction, they essentially used the junction as a tiny thermometer.

Heating the junction with an initial laser pulse, they hit it with a second pulse at specific time delays, comparing the crossover of temperatures. This technique allowed the team to measure the temperature of the system with sub-picosecond time resolution and within a few kelvins of accuracy. Their results agreed very well with the supercollision theory of the rate at which electrons cool in graphene.

The results provide further insights into the fundamental nature of graphene so it can one day be used in anything from photodetectors to non-silicon transistors, McEuen said. It is already well known that graphene shows promise for next-generation electronics because of its near-perfect conductivity, transparency and tensile strength.

The work was supported by the Kavli Institute, the National Science Foundation through the Center for Nanoscale Systems, the MARCO Focused Research Center on Materials, Structures and Devices, and the Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Media Contact:
Syl Kacapyr
(607) 255-7701


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Graphene/ Graphite

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Wrinkles give heat a jolt in pillared graphene : Rice University researchers test 3-D carbon nanostructures' thermal transport abilities November 2nd, 2017

Graphene enables high-speed electronics on flexible materials: A flexible terahertz detector has been developed by Chalmers using graphene transistors on plastic substrates. It is the first of its kind, and may open for applications requiring flexible electronics such as wireless October 31st, 2017

Physics

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3ís significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Military

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Oxford Instruments announces winner of the 2017 Sir Martin Wood Prize for Japan November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Photonics/Optics/Lasers

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Practical superconducting nanowire single photon detector with record detection efficiency over 90 percent November 9th, 2017

Metal-silicone microstructures could enable new flexible optical and electrical devices: Laser-based method creates force-sensitive, flexible microstructures that conduct electricity November 1st, 2017

Nanoparticles with pulse laser controlled antibacterial properties October 26th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project