Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Experiments bolster theory of how electrons cool in graphene

Matt Graham
An illustration of how a heated electron cools in graphene. The electron slowly cools by emitting regular phonons, illustrated by zigzags down a Dirac Cone (a visualization of graphene's electronic band structure). When the electron hits a defect, it bounces off the lattice - a "supercollision" - which speeds up the cooling process.
Matt Graham

An illustration of how a heated electron cools in graphene. The electron slowly cools by emitting regular phonons, illustrated by zigzags down a Dirac Cone (a visualization of graphene's electronic band structure). When the electron hits a defect, it bounces off the lattice - a "supercollision" - which speeds up the cooling process.

Abstract:
It's a basic tenet of physics that scientists are trying to explain in graphene, single-atom thick sheets of carbon: When electrons are excited, or heated, how quickly do they relax, or cool?

Experiments bolster theory of how electrons cool in graphene

Ithaca, NY | Posted on December 3rd, 2012

A research team supported by the Kavli Institute at Cornell for Nanoscale Science has shed some light on the topic through the first known direct measurements of hot electrons cooling down in graphene.

The team, which published its findings online Dec. 2 in the journal Nature Physics, includes lead researcher Paul McEuen, the Kavli Institute director and Goldwin Smith Professor of Physics; first author Matt Graham, a Kavli postdoctoral fellow; and co-authors Jiwoong Park, assistant professor of chemistry and chemical biology and Kavli member; Dan Ralph, Horace White Professor of Physics and Kavli member; and Su-Fei Shen, Ralph's former graduate student.

When electrons travel through graphene, they create a quantum lattice vibration, called a phonon. In doing so, the difference in energy the electron emits must equal the amount gained by the phonon; this is the "cooling" that happens as the system is returning to its equilibrium state, and this movement of electrons is at the heart of understanding how electronic devices work.

The new Cornell experiment supports a previous theory that electrons in graphene experience "supercollisions" as they cool -- they bump into defects in the crystal lattice, imparting their momentum to the defects, thereby making the cooling process much faster than if the graphene were a perfectly repeating crystal.

"The remarkable thing about the theory was it predicted all kinds of details, and it got it all right," McEuen said.

Watching electrons move through graphene took some novel experimental legwork. Graham and colleagues conceived a setup in which they shot very short laser pulses -- about 100 femtoseconds apart -- at a piece of conventionally grown graphene.

They observed the temperature of the graphene as it heated and cooled at a p-n junction, which is the interface at which electrons travel between two semiconductors. By tracking the magnitude of the current passing through the junction, they essentially used the junction as a tiny thermometer.

Heating the junction with an initial laser pulse, they hit it with a second pulse at specific time delays, comparing the crossover of temperatures. This technique allowed the team to measure the temperature of the system with sub-picosecond time resolution and within a few kelvins of accuracy. Their results agreed very well with the supercollision theory of the rate at which electrons cool in graphene.

The results provide further insights into the fundamental nature of graphene so it can one day be used in anything from photodetectors to non-silicon transistors, McEuen said. It is already well known that graphene shows promise for next-generation electronics because of its near-perfect conductivity, transparency and tensile strength.

The work was supported by the Kavli Institute, the National Science Foundation through the Center for Nanoscale Systems, the MARCO Focused Research Center on Materials, Structures and Devices, and the Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Media Contact:
Syl Kacapyr
(607) 255-7701


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Graphene

New pricing report for bulk graphene materials September 13th, 2014

Molecular self-assembly controls graphene-edge configuration September 10th, 2014

Penn Engineers Advance Understanding of Graphene’s Friction Properties September 10th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Discoveries

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Announcements

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Military

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

UT Arlington research uses nanotechnology to help cool electrons with no external sources September 11th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

Advanced Light Source Sets Microscopy Record| Berkeley Lab Researchers Achieve Highest Resolution Ever with X-ray Microscopy September 11th, 2014

Photonics/Optics/Lasers

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

First Colloid and Polymer Science Lecture awarded to Orlin D. Velev: Chemical engineer honored for outstanding research in colloid science September 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE