Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Small and efficient - water nanodroplets cool biomolecules ultrafast

Upper left: Schematic of a reverse micelle consisting of phospholipid molecules. The phosphate groups of the lipid molecules (blue spheres) are arranged at the inner surface of the micelle. Water molecules are located in the inner part of the micelle. Upper right: Enlarged view of the structure of a phospholipid molecule. Oxygen atoms are shown in red, hydrogen atoms in white, carbon atoms in grey, the nitrogen atom in blue, and the phosphorus atom in orange. The angled water molecules are arranged around the phosphate (PO4) group. Lower part: Scheme of energy transfer. In the experiments, the (asymmetric) phosphate vibration is initially excited (red oxygen atoms). The energy released in the decay of the vibration is transferred to the surrounding water shell (red H2O molecules) within 1 ps.
Upper left: Schematic of a reverse micelle consisting of phospholipid molecules. The phosphate groups of the lipid molecules (blue spheres) are arranged at the inner surface of the micelle. Water molecules are located in the inner part of the micelle. Upper right: Enlarged view of the structure of a phospholipid molecule. Oxygen atoms are shown in red, hydrogen atoms in white, carbon atoms in grey, the nitrogen atom in blue, and the phosphorus atom in orange. The angled water molecules are arranged around the phosphate (PO4) group. Lower part: Scheme of energy transfer. In the experiments, the (asymmetric) phosphate vibration is initially excited (red oxygen atoms). The energy released in the decay of the vibration is transferred to the surrounding water shell (red H2O molecules) within 1 ps.

Abstract:
Researchers of the Max-Born-Institute at Berlin, Germany, have observed how biomolecules transfer energy into extremely small water droplets in their environment. A water shell consisting of only 3 water molecules around a phospholipid molecule is sufficient for energy transfer within 1 ps.

Small and efficient - water nanodroplets cool biomolecules ultrafast

Berlin, Germany | Posted on December 2nd, 2012

Biochemical processes occur mainly in an aqueous environment. Particular groups of a biomolecule are embedded in a shell of water molecules, a process called hydration. The water shell stabilizes the biomolecular structure and enables an exchange of energy between the biomolecule and its environment. Examples are the double helix of DNA, the carrier of basic genetic information, in an aqueous medium and the membranes of living cells which consist of phospholipids. The molecular mechanisms, the speed and the efficiency of energy exchange between the biomolecule and the water shell are understood only in part and, thus, a topic of current basic research.

Scientists of the Max-Born-Institute have shown that extremely small water droplets embedding a phospholipid molecule enable efficient energy transfer on a time scale of 1 ps (1 ps = 10-12 s = 1 millionth of a millionth of a second). René Costard, Christian Greve, Ismael Heisler, and Thomas Elsaesser report in the current issue of Journal of Physical Chemistry Letters (vol.3, page 3646, 2012) that 3 water molecules around the phosphate group of the phospholipid are sufficient for transferring the energy of vibrations from the phospholipid into this minimal water shell. The transferred energy heats the water shell by 10 to 20 centigrades. The thermal energy is stored in tilting motions of water molecules, so called librations, and leads to a weakening of the interaction between the water molecules, the so called hydrogen bonds. The overall molecular structure of the water shell remains practically unchanged. This extremely efficient mechanism of energy disposal allows for the transfer of even larger amounts of energy, protecting the biomolecule against damage by overheating.

The researchers studied a phospholipid model system consisting of the DOPC molecules shown in Fig. 1. The molecules are arranged in so-called reverse micelles which contain the water molecules hydrating the phosphate groups. In this geometry, the hydration level, i.e., water content, can be changed in a wide range. For studying energy transfer, either phosphate vibrations of the phospholipid or OH stretching vibrations of water are excited by an infrared pulse of a 0.1 ps duration. The vibrations decay within a fraction of a picosecond and the energy released in this decay is transferred into the water shell. The transfer and redistribution of energy is mapped via transient two-dimensional infrared spectra of the OH stretching vibration of water. The weakening of hydrogen bonds in the heated water shell leads to a shift of the OH stretching spectra to higher frequencies. Measuring the change of the two-dimensional spectra as a function of time provides direct insight into the energy transfer dynamics.

Full bibliographic informationR. Costard, C. Greve, I. A. Heisler, T. Elsaesser: Ultrafast energy redistribution in local hydration shells of phospholipids: a two-dimensional infrared study. J. Phys. Chem. Lett. 3, 3646 (2012).

####

For more information, please click here

Contacts:
Thomas Elsaesser

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

Physics

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Discoveries

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Announcements

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Journal Nanotechnology Progress International (JONPI), newest edition out December 7th, 2016

Water

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Water, water -- the two types of liquid water: Understanding water's behavior could help with Alzheimer's research November 11th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project