Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > CFN – Theoretical Chemistry: Pathbreaking Review Paper - Density Functional Theory (DFT) for Open-shell Molecules: Spin Calculations

1) An experimental structure of a transition metal cluster based on the elements of chromium (Cr) and dysprosium (Dy). Its unpaired electrons lead to special magnetic properties (yellow arrows) that allow for its use as single molecule magnet.
Source: CFN, Professor Annie Powell, research project C 1.2 “Synthesis and Characterization of New Nano-Scale Aggregates Displaying Cooperative Magnetic Coupling*
1) An experimental structure of a transition metal cluster based on the elements of chromium (Cr) and dysprosium (Dy). Its unpaired electrons lead to special magnetic properties (yellow arrows) that allow for its use as single molecule magnet.

Source: CFN, Professor Annie Powell, research project C 1.2 “Synthesis and Characterization of New Nano-Scale Aggregates Displaying Cooperative Magnetic Coupling*

Abstract:
The review paper on the consideration of spin in density functional theory (DFT), published by the scientists Dr. Christoph Jacob from the Center for Functional Nanostructures (CFN) of Karlsruhe Institute of Technology and Professor Markus Reiher from ETH Zurich, functions to close a major knowledge gap in theoretical chemistry.

CFN – Theoretical Chemistry: Pathbreaking Review Paper - Density Functional Theory (DFT) for Open-shell Molecules: Spin Calculations

Karlsruhe, Germany | Posted on November 30th, 2012

DFT is an important tool within the field of theoretical chemistry. It is used to calculate the properties of molecules and solids, such as binding lengths and energies.

For the time being, molecules with paired electrons only can be calculated using DFT. For molecules with unpaired electrons, also called open-shell systems, DFT cannot yet be applied in a satisfactory manner. Unpaired electrons lead to a magnetic moment, the spin, and its consideration by DFT remains quite challenging.

In transition metals and their compounds, these unpaired electrons offer a rich and complex chemistry, making them interesting for a number of applications. Change of spin in bio-inorganic reactions, for instance, may be responsible for a transition metal complex acting as a catalyst. Transition metal clusters in single molecule magnets are integral as connections of storage elements in (quantum) information processing.

The large scope of applications explains the high scientific interest in calculating the behavior of open-shell systems using theoretical methods. In past years, scientists Jacob and Reiher began systematic studies in this field and developed solution approaches. Currently, they have published their detailed results in the International Journal of Quantum Chemistry in the form of a tutorial that is highly useful for both beginners and advanced practitioners.

"Understanding of the underlying exact theory is a prerequisite for the development of a reliable approximation method. That is why we first sum up these fundamentals," Jacob says. The authors explain the non-relativistic treatment of spin for a single electron - the subject of many basic studies in quantum mechanics. They then analyze the treatment of spin using the Hohenberg-Kohn and Kohn-Sham DFT. Various methods of considering spin in DFT are described and analyzed. Jacob and Reiher also study the relativistic DFT. Finally, proposals are made as to how spin approximation can be improved within the DFT.

Density Functional Theory (DFT)

In the 1960s, fostered by the newly emerging computer generation, quantum chemistry developed into its own field of theoretical chemistry. Until then, it had been scarcely possible to describe complex structures, such as molecules, using mathematical equations to calculate their behavior. Although the underlying laws were well known, they were too complex to be managed using calculations alone. The calculation of chemical bonds between the atoms of a molecule became possible only after the development of approximation methods and the more ubiquitous use of computers in the 1960s. In chemistry, this development marked the transition from an experimental to a computable science. Two leading fundamental scientists of that time were Walter Kohn and John A. Pople. In 1998, they were awarded the Noble Prize for Chemistry, Kohn for the development of the DFT and Pople for the development of computation methods in quantum chemistry. Since then, computing capacity has multiplied exponentially and DFT has developed further, such that it can now be used for larger and more specific structures.

The Authors:

Christoph R. Jacob has been heading the Junior Research Group for Theoretical Chemistry at the Center for Functional Nanostructures (CFN) of the Karlsruhe Institute of Technology (KIT) since 2010. He studied chemistry and mathematics at the University of Marburg and the University of Karlsruhe (today's KIT). In 2007, he was conferred his doctorate by the VU University of Amsterdam (The Netherlands). He worked at Auckland University (New Zealand) and ETH Zurich (Switzerland).

Markus Reiher has been a professor of theoretical chemistry at ETH Zurich (Switzerland) since 2006. He studied chemistry, was conferred his doctorate in theoretical chemistry by the University of Bielefeld, and earned his post-doctoral lecture qualification at the University of Erlangen in 2002. He then worked as a private lecturer at the University of Erlangen and the University of Bonn. In 2005, he accepted a professorship for physical chemistry at the University of Jena. A year later, he accepted a call by ETH Zurich.

####

About DFG Center for Functional Nanostructures (CFN)
The DFG Center for Functional Nanostructures (CFN) focuses on an important area of nanotechnology, functional nanostructures. Its excellent interdisciplinary and international research is aimed at representing nanostructures with new technical functions and at making the first step from fundamental research to application. Presently, more than 250 scientists and engineers are cooperating in more than 80 partial projects at the CFN in Karlsruhe. The focus is placed on the areas of nanophotonics, nanoelectronics, molecular nanostructures, nanobiology, and nanoenergy. The building of the CFN is located on the Campus South of the Karlsruhe Institute of Technology.

www.cfn.kit.edu



* First Publication of image 1: Julia Rinck, Ghenadie Novitchi, Willem Van den Heuvel, Liviu Ungur, Yanhua Lan, Wolfgang Wernsdorfer, Christopher E. Anson, Liviu F. Chibotaru, and Annie K. Powell, Angew. Chem. Int. Ed. 2010, 49, Single-Molecule Magnets, p. 7585

For more information, please click here

Contacts:
Tatjana Erkert
KIT / CFN, Wolfgang-Gaede-Str. 1a
Karlsruhe, BW, 76139 Germany
Phone: ++49 721 608 43409

Copyright © DFG Center for Functional Nanostructures (CFN)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Physics

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials August 12th, 2014

Chemistry

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Quantum Computing

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamonds are a Quantum Computer’s Best Friend: A new kind of quantum computer is being proposed by scientists from the TU Wien (Vienna) and Japan (National Institute of Informatics and NTT Basic Research Labs) August 8th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014

Discoveries

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Announcements

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Quantum nanoscience

Molecular engineers record an electron's quantum behavior August 14th, 2014

Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials August 12th, 2014

Measuring the Smallest Magnets July 28th, 2014

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE