Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Research discovery could revolutionize semiconductor manufacture

Image: Aerotaxy production process
Image: Aerotaxy production process

Abstract:
A completely new method of manufacturing the smallest structures in electronics could make their manufacture thousands of times quicker, allowing for cheaper semiconductors. The findings have been published in the latest issue of Nature.

Instead of starting from a silicon wafer or other substrate, as is usual today, researchers have made it possible for the structures to grow from freely suspended nanoparticles of gold in a flowing gas.

Research discovery could revolutionize semiconductor manufacture

Lund, Sweden | Posted on November 29th, 2012

Behind the discovery is Lars Samuelson, Professor of Semiconductor Physics at Lund University, Sweden, and head of the University's Nanometre Structure Consortium. He believes the technology will be ready for commercialisation in two to four years' time. A prototype for solar cells is expected to be completed in two years.

"When I first suggested the idea of getting rid of the substrate, people around me said ‘you're out of your mind, Lars; that would never work'. When we tested the principle in one of our converted ovens at 400°C, the results were better than we could have dreamt of", he says.

"The basic idea was to let nanoparticles of gold serve as a substrate from which the semiconductors grow. This means that the accepted concepts really were turned upside down!"

Since then, the technology has been refined, patents have been obtained and further studies have been conducted. In the article in Nature, the researchers show how the growth can be controlled using temperature, time and the size of the gold nanoparticles.

Recently, they have also built a prototype machine with a specially built oven. Using a series of ovens, the researchers expect to be able to ‘bake' the nanowires, as the structures are called, and thereby develop multiple variants, such as p-n diodes.
A further advantage of the technology is avoiding the cost of expensive semiconductor wafers.

"In addition, the process is not only extremely quick, it is also continuous. Traditional manufacture of substrates is batch-based and is therefore much more time-consuming", adds Lars Samuelson.

At the moment, the researchers are working to develop a good method to capture the nanowires and make them self-assemble in an ordered manner on a specific surface. This could be glass, steel or another material suited to the purpose.
The reason why no one has tested this method before, in the view of Professor Samuelson, is that today's method is so basic and obvious. Such things tend to be difficult to question.

However, the Lund researchers have a head start thanks to their parallel research based on an innovative method in the manufacture of nanowires on semiconductor wafers, known as epitaxy - consequently, the researchers have chosen to call the new method aerotaxy. Instead of sculpting structures out of silicon or another semiconductor material, the structures are instead allowed to develop, atomic layer by atomic layer, through controlled self-organisation.

The structures are referred to as nanowires or nanorods. The breakthrough for these semiconductor structures came in 2002 and research on them is primarily carried out at Lund, Berkeley and Harvard universities.

The Lund researchers specialise in developing the physical and electrical properties of the wires, which helps create better and more energy-saving solar cells, LEDs, batteries and other electrical equipment that is now an integrated part of our lives.

The article ‘Continuous gas-phase synthesis of nanowires with tuneable properties' can be found by entering "I 10.1038/nature11652" here: http://dx.doi.org/.

Besides Lars Samuelson, the other authors of the article are: Magnus Heurlin, Martin Magnusson, David Lindgren, Martin Ek, Reine Wallenberg and Knut Deppert, all employed at Lund University, except for Martin Magnusson, who works at start-up company Sol Voltaics AB.

The research has been funded by the Swedish Research Council, the Swedish Foundation for Strategic Research (SSF), the Knut and Alice Wallenberg Foundation and Vinnova.

####

About Lund University
Lund University seeks to be a world-class university that works to understand, explain and improve our world and the human condition. The University is ranked as one of the top 100 in the world. We tackle complex problems and global challenges and work to ensure that knowledge and innovations benefit society. We provide education and research in engineering, science, law, social sciences, economics and management, medicine, humanities, theology, fine art, music and drama.

Our 47 000 students and 6 800 employees are based at our campuses in Lund, Malmö and Helsingborg. The University has a turnover of around EUR 700 million (or USD 900 million), of which two thirds is in research and one third in education.

About semiconductors

Semiconductors are materials that neither conduct electricity as well as metals, nor stop a current as effectively as insulators – silicon and germanium are two examples. These properties may not sound attractive, but in actual fact they are excellent. The reason is that we can influence the conductive capacity of the materials, for example by introducing impurity atoms, known as doping. Materials with different types of doping can be combined to manufacture products such as transistors, solar cells or LEDs.

For more information, please click here

Contacts:
Lars Samuelson

+46 46 222 76 79
+46-703-177-679

Copyright © Lund University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Contact details for the other authors can be found by searching on www.lunduniversity.lu.se:

Lund University Nanometre Structure Consortium, nmC@LU:

Related News Press

News and information

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

Chip Technology

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Silicon Catalyst Announces Partnership With imec to Support Semiconductor Start-Ups February 23rd, 2015

Discoveries

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

Announcements

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Energy

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Solar/Photovoltaic

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

Researchers enable solar cells to use more sunlight February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE