Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Mix Masters: NIST Scientists Image the Molecular Structure of Polymer Blends

Typical BCARS composite image of a polyethylene blend taken at NIST showing circular polarization response. LLD polyethylene shows red in this mode, while the HD polyethylene with deuterium substituted for hydrogen is green.
Credit: NIST
Typical BCARS composite image of a polyethylene blend taken at NIST showing circular polarization response. LLD polyethylene shows red in this mode, while the HD polyethylene with deuterium substituted for hydrogen is green.

Credit: NIST

Abstract:
Using an enhanced form of "chemical microscopy" developed at the National Institute of Standards and Technology (NIST), researchers there have shown that they can peer into the structure of blended polymers, resolving details of the molecular arrangement at sub-micrometer levels.* The capability has important implications for the design of industrially important polymers like the polyethylene blends used to repair aging waterlines.

Mix Masters: NIST Scientists Image the Molecular Structure of Polymer Blends

Gaithersburg, MD | Posted on November 29th, 2012

Polyethylene is one of the most widely produced and used polymers in the world. It's used in many familiar applications—milk bottles, for instance—but the NIST research is motivated by a more critical application: water pipes. Aging water infrastructure is a significant national issue. The Environmental Protection Agency has reported that in the United States there are over 240,000 water main breaks per year, leaks wasting 1.7 trillion gallons of water per year, and costs to taxpayers of $2.6 billion per year.

Polyethylene pipes are one potential solution. They're relatively inexpensive to make and install, and they have negligible corrosion issues and a predicted service life of up to a century under ideal conditions. Unfortunately, current test standards do not address service life under field conditions, especially for fusion joints in the pipes. This uncertainty has slowed the use of large diameter polyethylene pipe.

The industry standard for polyethylene pipes is a blend of two different forms of the polymer, a medium-weight, high-density polyethylene (HDPE) and a high molecular weight "linear low-density polyethylene" (LLDPE). Combining the two, says NIST materials scientist Young Jong Lee, dramatically improves the toughness, strength and resistance to fracture of the polymer.

The problem for quantitative service-life prediction is understanding exactly why that is. Developing the necessary predictive models has been hindered by knowing just how the HDPE and LLDPE molecules blend together. They are so close chemically that X-ray or electron imaging—the usual go-to techniques for molecular structure—can't readily distinguish them.

The NIST team is using a variation of Raman spectroscopy, which can distinguish different chemical species—and measure how much of each—by analyzing the frequencies associated with the different vibrational modes of each molecule. The exact mix of these frequencies is an extremely discriminating "fingerprint" for any particular molecule without help of fluorescence labeling. Raman spectroscopy using focused laser beams has been used as a chemical microscope, able to detail the structure of complex objects by mapping the chemical composition at each point in a three-dimensional space.

The NIST instrument, called "BCARS" (broadband coherent anti-Stokes Raman scattering) microscopy, uses a pair of lasers to gather Raman data at least 10 times faster than other Raman imaging methods, a critical feature because of the vast amount of data that must be gathered to understand such highly structured blend systems.** The extra trick is to substitute deuterium ("heavy hydrogen") for hydrogen atoms in the HDPE component. The deuterium strongly shifts the Raman spectrum, making it easy to distinguish the two components. By controlling the polarization of the light, the technique provides additional details on the local crystal orientation of molecules in the polymer. The images show, for example, the formation of microscopic spherical regions of partial crystallization with the LLDPE more concentrated towards the center.

"This is a fast, three-dimensional chemical imaging technique that's particularly useful for studying microstructures of polymeric materials," says Lee. The group currently is using BCARS to find the correlation between microscopic structures with characteristics of deformation and thermal fusion on polyethylene pipes. For more on Broadband CARS microscopy, see www.nist.gov/mml/bbd/biomaterials/bcars.cfm.

* Y.J. Lee, C.R. Snyder, A.M. Forster, M.T. Cicerone and W. Wu. Imaging the molecular structure of polyethylene blends with broadband coherent Raman microscopy. ACS Macro Lett. 2012, 1, 1347-1351.DOI: dx.doi.org/10.1021/mz300546e.

** See, for example, the Oct. 2010 story, "Faster CARS, Less Damage: NIST Chemical Microscopy Shows Potential for Cell Diagnostics" at www.nist.gov/public_affairs/tech-beat/tb20101013.cfm#cars.

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Michael Baum
301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Laboratories

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Materials/Metamaterials

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Researchers patent a nanofluid that improves heat conductivity October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE