Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > James' bond: A graphene/nanotube hybrid: Rice University's James Tour Group creates single-surface material for energy storage, electronics

Seven-atom rings (in red) at the transition from graphene to nanotube make a new hybrid material from Rice University a seamless conductor. The hybrid may be the best electrode interface material possible for many energy storage and electronics applications.

Credit: Tour Group/Rice University
Seven-atom rings (in red) at the transition from graphene to nanotube make a new hybrid material from Rice University a seamless conductor. The hybrid may be the best electrode interface material possible for many energy storage and electronics applications.

Credit: Tour Group/Rice University

Abstract:
A seamless graphene/nanotube hybrid created at Rice University may be the best electrode interface material possible for many energy storage and electronics applications.

James' bond: A graphene/nanotube hybrid: Rice University's James Tour Group creates single-surface material for energy storage, electronics

Houston, TX | Posted on November 27th, 2012

Led by Rice chemist James Tour, researchers have successfully grown forests of carbon nanotubes that rise quickly from sheets of graphene to astounding lengths of up to 120 microns, according to a paper published today by Nature Communications. A house on an average plot with the same aspect ratio would rise into space.

That translates into a massive amount of surface area, the key factor in making things like energy-storing supercapacitors.

The Rice hybrid combines two-dimensional graphene, which is a sheet of carbon one atom thick, and nanotubes into a seamless three-dimensional structure. The bonds between them are covalent, which means adjacent carbon atoms share electrons in a highly stable configuration. The nanotubes aren't merely sitting on the graphene sheet; they become a part of it.

"Many people have tried to attach nanotubes to a metal electrode and it's never gone very well because they get a little electronic barrier right at the interface," Tour said. "By growing graphene on metal (in this case copper) and then growing nanotubes from the graphene, the electrical contact between the nanotubes and the metal electrode is ohmic. That means electrons see no difference, because it's all one seamless material.

"This gives us, effectively, a very high surface area of more than 2,000 square meters per gram of material. It's a huge number," said Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science and a co-author with former postdoctoral researcher and lead author Yu Zhu, now an assistant professor at the University of Akron.


Tour said proof of the material's hybrid nature lies in the seven-membered rings at the transition from graphene to nanotube, a structure predicted by theory for such a material and now confirmed through electron microscope images with subnanometer resolution.

Carbon has no peer as a conductive material in such a thin and robust form, especially in the form of graphene or certain types of nanotubes. Combining the two appears to offer great potential for electronic components like fast supercapacitors that, because of the massive surface area, may hold a great deal of energy in a tiny package.

Rice chemist Robert Hauge and his team made the first steps toward such a hybrid over the past decade. Hauge, a distinguished faculty fellow in chemistry at Rice and co-author of the new work, discovered a way to make densely packed carpets of nanotubes on a carbon substrate by suspending catalyst-laced flakes in a furnace. When heated, the catalyst built carbon nanotubes like skyscrapers, starting at the substrate and working their way up. In the process, they lifted the aluminum oxide buffer into the air. The whole thing looked like a kite with many strings and was dubbed an odako, like the giant Japanese kites.

In the new work, the team grew a specialized odako that retained the iron catalyst and aluminum oxide buffer but put them on top of a layer of graphene grown separately on a copper substrate. The copper stayed to serve as an excellent current collector for the three-dimensional hybrids that were grown within minutes to controllable lengths of up to 120 microns.

Electron microscope images showed the one-, two- and three-walled nanotubes firmly embedded in the graphene, and electrical testing showed no resistance to the flow of current at the junction.

"The performance we see in this study is as good as the best carbon-based supercapacitors that have ever been made," Tour said. "We're not really a supercapacitor lab, and still we were able to match the performance because of the quality of the electrode. It's really remarkable, and it all harkens back to that unique interface."

Co-authors of the Nature Communications paper are Rice graduate students Gedeng Ruan, Lei Li, Zheng Yan, Zhiwei Peng and Abdul-Rahman Raji; visiting student Chenguang Zhang of Rice and Tianjin University; Gilberto Casillas, a graduate student at the University of Texas at San Antonio; Rice alumnus Zhengzong Sun, now a postdoctoral researcher at the University of California, Berkeley; and Carter Kittrell, a lab manager at Rice's Richard E. Smalley Institute for Nanoscale Science and Technology.

The research was supported by the Air Force Office of Scientific Research (AFOSR), the Lockheed Martin Corp. through the LANCER IV program, the Office of Naval Research Multidisciplinary University Research Initiative (MURI) program and the AFOSR MURI program.

####

For more information, please click here

Contacts:
David Ruth

713-348-6327

Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Tour Group:

Nanotubes take flight:

Richard E. Smalley Institute for Nanoscale Science and Technology:

Related News Press

News and information

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Graphene

Two-dimensional semiconductor comes clean April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Chip Technology

Two-dimensional semiconductor comes clean April 27th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Nanotubes/Buckyballs/Fullerenes

SouthWest NanoTechnologies CEO Dave Arthur to Speak at NanoBCA DC Roundtable on May 19 in Washington DC April 20th, 2015

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Discoveries

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Military

Two-dimensional semiconductor comes clean April 27th, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Phonons, arise! Small electric voltage alters conductivity in key materials April 22nd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project