Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Isoporous membranes of polystyrene-block-poly(ethylene oxide)

Abstract:
The formation of isoporous membranes is a sensitive process dependent on molecular, solution, and processing parameters. Writing in the Journal of Polymer Science: Polymer Physics, Volker Abetz and colleagues use a combination of block self-assembly and phase inversion to prepare asymmetric membranes with highly ordered hexagonally packed cylinders composed of polystyrene-block-poly(ethylene oxide).

Isoporous membranes of polystyrene-block-poly(ethylene oxide)

Germany | Posted on November 24th, 2012

The self-assembled nanostructured systems were a limiting factor in pharmaceutical and separation systems because of biofouling. Modifying the surface of the material with poly(ethylene oxide), they exhibit improved protein resistance, water solubility and blood compatibility. The advantages of the properties and self-assembly of polystyrene-block-poly(ethylene oxide) with the nonsolvent induced phase inversion for controlled orientation were combined to obtain the first integral-asymmetric membrane with an isoporous top layer.

"Our results provide a detailed insight in the structure formation of integral-asymmetric, isoporous membranes of polystyrene-block-poly(ethylene oxide). These were carried out via dynamic light scattering and cloud point determinations. Based on our results we successfully set parameters like non-solvent, solvent composition and evaporation time," says Abetz. "Poly(ethylene oxide) is widely known to prevent membrane biofouling. Furthermore it is proven to be biocompatible. For this reason these membranes offer a high potential for medical and biotechnological applications."

The interplay of the nonsolvent and the solvent system was evaluated and the selectivity of the solvent for individual blocks was adjusted. The structure formation is strongly influenced by the selection of the solvent system and the nonsolvent bath.

"Since this process is sensitive to a huge number of parameters, the challenge of our work was to investigate some of these parameters like evaporation time, polymer concentration and the solvent and non-solvent system. Therefore, we offer insight into the thermodynamic properties of the ternary system of the block copolymer, solvent and non-solvent system," explains Abetz.

Further research will focus on the study the structure formation of block copolymers of this type with various molecular weights and volume fractions. Furthermore the researchers plan to optimize the flux properties and to determine the fouling properties of these membranes over long periods of time.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Self Assembly

Self-assembling particles brighten future of LED lighting January 18th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Researchers fabricate high performance Cu(OH)2 supercapacitor electrodes December 29th, 2016

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Discoveries

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Announcements

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

A toolkit for transformable materials: How to design materials with reprogrammable shape and function January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project