Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Transforming ‘noise’ into mechanical energy at nanometric level

Transforming ‘noise’ into mechanical energy
Transforming ‘noise’ into mechanical energy

Abstract:
A team of researchers at the Freie Universität Berlin, co-ordinated by José Ignacio Pascual (current leader of the Nanoimagen team at CIC nanoGUNE), have developed a method that enables efficiently using the random movement of a molecule in order to make a macroscopic-scale lever oscillate. The research was published in Science.

Transforming ‘noise’ into mechanical energy at nanometric level

Gipuzkoa, Spain | Posted on November 23rd, 2012

In nature processes such as the movement of fluids, the intensity of electromagnetic signals, chemical compositions, etc., are subject to random fluctuations which normally are called ‘noise'. This noise is a source of energy and its utilisation for undertaking a task is a paradigm that nature has shown to be possible in certain cases.

The research led by José Ignacio Pascual and published in Science, focused on a molecule of hydrogen (H2). The researchers placed the molecule within a very small space between a flat surface and the sharp point of an ultra-sensitive atomic force microscope. This microscope used the periodic movement of the point located at the end of a highly sensitive mechanical oscillator in order to ‘feel' the forces that exist at a nanoscale level. The molecule of hydrogen moves randomly and chaotically and, when the point of the microscope approaches it, the point hits the molecule, making the oscillator or lever move. But this lever, at the same time, modulates the movement of the molecule, resulting in an orchestrated ‘dance' between the point and the ‘noisy' molecule. "The result is that the smallest molecule that exists, a molecule of hydrogen, ‘pushes' the lever, that has a mass 1019 greater; ten trillion time greater!", explained José Ignacio Pascual.

The underlying principle is a mathematical theory known as Stocastic Resonance which describes how random movements of energy are channelled into periodic movements and, thus, can be harnessed. With this research, it has been shown that this principle is fulfilled at a nanometric scale.

"In our experiment, the ‘noise' of the molecule is made by injecting electric current, and not temperature, through the molecule and, thus, functions like an engine converting electric energy into mechanical", stated José Ignacio Pascual. Thus, one of the most promising aspects of this result is that it can be applied to the design of artificial molecules, which are complex molecules designed to be able to oscillate or rotate in only one direction. The authors do not discard, moreover, that this molecular fluctuation can be produced by other sources, such as light, or be carried out with a greater number of molecules, even with different chemical compositions.

####

About Elhuyar Fundazioa
Elhuyar Fundazioa is a Science and Technology Foundation. Its first mission is to make science accessible to ordinary people and work with our language euskara. Within our product we have dictionaries, University books, web-pages, journals, radio programs and TV programs.

For more information, please click here

Contacts:
Aitziber Lasa Iglesias

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Physics

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Creation of a Highly Efficient Technique to Develop Low-Friction Materials Which Are Drawing Attention in Association with Energy Issues August 26th, 2014

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Discoveries

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Announcements

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE