Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > No Need for Industrial Chemical Reductants in the Formation of Gold Nanoparticles

Abstract:
Prof. Kumar and colleagues report a possible non-destructive approach for the synthesis of gold nanoparticles employing the seed shell and detoxified-defatted seed meal aqueous extracts of Jatropha curcas. The gold nanoparticles prove highly biocompatible with excellent biodiagnostic and photothermal properties. Crucially, they observed a minimal loss in the inherent characteristic potentials of the seed meal (protein) and shell (ash content) which underlines the sustainable usage of bio-resources achieved with this approach.

No Need for Industrial Chemical Reductants in the Formation of Gold Nanoparticles

London, UK | Posted on November 22nd, 2012

With nanotechnology and related advanced technologies emerging at a rapid pace, both in developed and developing countries, the stress on the availability of raw materials is immense.The rapid industrialization of emerging economies, has intensified competition for raw materials, especially those of biological origins. In many cases, the biological sources used for these purposes are partially or completely used up, which may lead to their shortage and possibly create a void in the ecosystem within the near future. Therefore, it is more important than ever to strike a balance between the industry and raw materials. In the article published last week in Nanomaterials and the Environment, an open access journal by Versita, Prof. Sakthi Kumar and his team from the Bio-Nano Electronics Research Center at Toyo University in Japan, propose an uncomplicated alternative to acquiring renewable sources of reducing agents for the synthesis of nanoparticles.

The scientists report a possible non-destructive approach for the synthesis of gold nanoparticles employing the seed shell and detoxified-defatted seed meal aqueous extracts of Jatropha curcas. The gold nanoparticles prove highly biocompatible with excellent biodiagnostic and photothermal properties. Crucially, they observed a minimal loss in the inherent characteristic potentials of the seed meal (protein) and shell (ash content) which underlines the sustainable usage of bio-resources achieved with this approach.

The large quantity of reducing sources thus obtained is highly eco-friendly and it doesn't involve the use of any chemicals. In addition to initiating a trend towards sustainable usage of bio resources, the parent biological sources, which are in fact byproducts of the Jatropha curcas biodiesel industry, preserve their original characteristics, thereby increasing their economic viability. The biological sources, seed shell and meal were efficiently used to synthesize gold nanoparticles without compromising their inherent potentials, subsequently elevating their economic prospects. These gold nanoparticles were almost uniform in shape and size and they exhibited excellent biodiagnostic and photothermal properties against human neuronal and glioblastoma brain cancer cells. The ash content of the seed shells and the protein content of the seed meal remained almost identical after the extraction process.

Commenting on the research results, Dr. Raymond Whitby, Head of the Nanoscience and Nanotechnology Group and the Global Education Outreach in Science, Engineering and Technology (GEOSET), says: "The use of natural extracts to drive reduction of metal solutions to form metal nanoparticles is seen as a positive step towards responsible development of green technologies. Prof Kumar and colleagues have wonderfully demonstrated that the extracts from Jatropha curcas not only produced size and geometry controlled gold nanoparticles, but also showed that the gold nanoparticles displayed superior "cyto-amiability" compared with other gold nanoparticles produced by conventional chemical means as well as determining no apparent destruction of the seed. The approach to versatile uses of natural products in nanoscience has taken a big step forward."

Though lucrative, due to the eco-compatibility and high cost efficiency, most bio-mediated nanoparticle synthesis strategies usually involve destruction of the parent biological source viz., plants, microorganisms or their components. The abundance of bio-resources accounts for such an approach, but in the long term, proves unsustainable. Moreover, it also restricts the economic prospects of the source. Kumar report, however, bypasses the conventional approach of such a destructive route to tread a path where the harmony between natural amenities and their application is both justified and judicial.

The commercial value of the byproducts (shell and meal) will definitely be enhanced, and this method could also indirectly advance the commercial prospects of the Jatropha curcas biodiesel industry, which is already turning into a lifeline industry of many developing nations. Experts expect it to become a high prospect alternative energy source. As a result, we can anticipate a shift towards more sustained and judicial usage of available bio-resources.

View full article: www.degruyter.com/view/j/nanome.2012.1.issue/nanome-2012-0002/nanome-2012-0002.xml?format=INT

####

About Versita
Versita www.versita.com is one of the world's leading publishers of open access scientific content. Today Versita publishes about 350 own and third-party scholarly journals across all major disciplines. The company was established in 2001 and is now part of the De Gruyter publishing group www.degruyter.com. Since 2006 Versita has been a member of Association of Learned and Professional Society Publishers and International Association of Scientific, Technical & Medical Publishers. Versita's book and journal programs have been endorsed by the international research community and some of the world's top scientists - Nobel Prize Winners included. The company is on the constant mission to make best scientific content freely available to all scholars and readers alike.

For more information, please click here

Contacts:
Maria Hrynkiewicz
Phone: +48 660476421

Copyright © Versita Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Chemistry

Adding some salt to the recipe for energy storage materials: Researchers use common table salt as growth template April 22nd, 2016

NRL reveals novel uniform coating process of p-ALD April 21st, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

McMaster researchers achieve a first by coaxing molecules into assembling themselves: Major advance creates the potential for useful new materials April 21st, 2016

Discoveries

Nanograft seeded with 3 cell types promotes blood vessel formation to speed wound healing April 27th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Danish researchers behind vaccine breakthrough April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Announcements

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic