Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > No Need for Industrial Chemical Reductants in the Formation of Gold Nanoparticles

Abstract:
Prof. Kumar and colleagues report a possible non-destructive approach for the synthesis of gold nanoparticles employing the seed shell and detoxified-defatted seed meal aqueous extracts of Jatropha curcas. The gold nanoparticles prove highly biocompatible with excellent biodiagnostic and photothermal properties. Crucially, they observed a minimal loss in the inherent characteristic potentials of the seed meal (protein) and shell (ash content) which underlines the sustainable usage of bio-resources achieved with this approach.

No Need for Industrial Chemical Reductants in the Formation of Gold Nanoparticles

London, UK | Posted on November 22nd, 2012

With nanotechnology and related advanced technologies emerging at a rapid pace, both in developed and developing countries, the stress on the availability of raw materials is immense.The rapid industrialization of emerging economies, has intensified competition for raw materials, especially those of biological origins. In many cases, the biological sources used for these purposes are partially or completely used up, which may lead to their shortage and possibly create a void in the ecosystem within the near future. Therefore, it is more important than ever to strike a balance between the industry and raw materials. In the article published last week in Nanomaterials and the Environment, an open access journal by Versita, Prof. Sakthi Kumar and his team from the Bio-Nano Electronics Research Center at Toyo University in Japan, propose an uncomplicated alternative to acquiring renewable sources of reducing agents for the synthesis of nanoparticles.

The scientists report a possible non-destructive approach for the synthesis of gold nanoparticles employing the seed shell and detoxified-defatted seed meal aqueous extracts of Jatropha curcas. The gold nanoparticles prove highly biocompatible with excellent biodiagnostic and photothermal properties. Crucially, they observed a minimal loss in the inherent characteristic potentials of the seed meal (protein) and shell (ash content) which underlines the sustainable usage of bio-resources achieved with this approach.

The large quantity of reducing sources thus obtained is highly eco-friendly and it doesn't involve the use of any chemicals. In addition to initiating a trend towards sustainable usage of bio resources, the parent biological sources, which are in fact byproducts of the Jatropha curcas biodiesel industry, preserve their original characteristics, thereby increasing their economic viability. The biological sources, seed shell and meal were efficiently used to synthesize gold nanoparticles without compromising their inherent potentials, subsequently elevating their economic prospects. These gold nanoparticles were almost uniform in shape and size and they exhibited excellent biodiagnostic and photothermal properties against human neuronal and glioblastoma brain cancer cells. The ash content of the seed shells and the protein content of the seed meal remained almost identical after the extraction process.

Commenting on the research results, Dr. Raymond Whitby, Head of the Nanoscience and Nanotechnology Group and the Global Education Outreach in Science, Engineering and Technology (GEOSET), says: "The use of natural extracts to drive reduction of metal solutions to form metal nanoparticles is seen as a positive step towards responsible development of green technologies. Prof Kumar and colleagues have wonderfully demonstrated that the extracts from Jatropha curcas not only produced size and geometry controlled gold nanoparticles, but also showed that the gold nanoparticles displayed superior "cyto-amiability" compared with other gold nanoparticles produced by conventional chemical means as well as determining no apparent destruction of the seed. The approach to versatile uses of natural products in nanoscience has taken a big step forward."

Though lucrative, due to the eco-compatibility and high cost efficiency, most bio-mediated nanoparticle synthesis strategies usually involve destruction of the parent biological source viz., plants, microorganisms or their components. The abundance of bio-resources accounts for such an approach, but in the long term, proves unsustainable. Moreover, it also restricts the economic prospects of the source. Kumar report, however, bypasses the conventional approach of such a destructive route to tread a path where the harmony between natural amenities and their application is both justified and judicial.

The commercial value of the byproducts (shell and meal) will definitely be enhanced, and this method could also indirectly advance the commercial prospects of the Jatropha curcas biodiesel industry, which is already turning into a lifeline industry of many developing nations. Experts expect it to become a high prospect alternative energy source. As a result, we can anticipate a shift towards more sustained and judicial usage of available bio-resources.

View full article: www.degruyter.com/view/j/nanome.2012.1.issue/nanome-2012-0002/nanome-2012-0002.xml?format=INT

####

About Versita
Versita www.versita.com is one of the world's leading publishers of open access scientific content. Today Versita publishes about 350 own and third-party scholarly journals across all major disciplines. The company was established in 2001 and is now part of the De Gruyter publishing group www.degruyter.com. Since 2006 Versita has been a member of Association of Learned and Professional Society Publishers and International Association of Scientific, Technical & Medical Publishers. Versita's book and journal programs have been endorsed by the international research community and some of the world's top scientists - Nobel Prize Winners included. The company is on the constant mission to make best scientific content freely available to all scholars and readers alike.

For more information, please click here

Contacts:
Maria Hrynkiewicz
Phone: +48 660476421

Copyright © Versita Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK announces expansion of its global sales and service activities in China and USA April 15th, 2014

Nanobiotix Appoints Thierry Otin as Head of Manufacturing and Supply April 15th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Chemistry

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Making clothes from sugar: IBN researchers have found a green and efficient method to produce nylon from sugar April 1st, 2014

Good vibrations: Using light-heated water to deliver drugs - Researchers use near-infrared light to warm water-infused polymeric particles April 1st, 2014

Discoveries

Engineers develop new materials for hydrogen storage April 15th, 2014

Nanocrystalline cellulose modified into an efficient viral inhibitor April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun ó even when itís not shining April 15th, 2014

Announcements

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun ó even when itís not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE