Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New structures self-assemble in synchronized dance

Photo by
L. Brian Stauffer

Researchers from the University of Illinois and Northwestern University demonstrated tiny spheres that synchronize their movements as they self-assemble into a spinning microtube. From left, Erik Luijten, Jing Yan, Steve Granick and Sung Chul Bae.
Photo by L. Brian Stauffer

Researchers from the University of Illinois and Northwestern University demonstrated tiny spheres that synchronize their movements as they self-assemble into a spinning microtube. From left, Erik Luijten, Jing Yan, Steve Granick and Sung Chul Bae.

Abstract:
With self-assembly guiding the steps and synchronization providing the rhythm, a new class of materials forms dynamic, moving structures in an intricate dance.

New structures self-assemble in synchronized dance

Champaign, IL | Posted on November 21st, 2012

Researchers from the University of Illinois and Northwestern University have demonstrated tiny spheres that synchronize their movements as they self-assemble into a spinning microtube. Such in-motion structures, a blending of mathematics and materials science, could open a new class of technologies with applications in medicine, chemistry and engineering. The results will be published in the Nov. 22 edition of the journal Nature.

"The world's concept of self-assembly has been to think of static structures - something you would see in a still image," said Steve Granick, the Founder Professor of Engineering at the U. of I. and a co-leader of the study. "We want shape-shifting structures. Structures where a photograph doesn't tell you what matters. It's like the difference between a photograph and a movie."

The researchers used tiny particles called Janus spheres, named after the Roman god with two faces, which Granick's group developed and previously demonstrated for self-assembly of static structures. In this study, one half of each sphere is coated with a magnetic metal. When dispersed in solution and exposed to a rotating magnetic field, each sphere spins in a gyroscopic motion. They spin at the same frequency but all face a different direction, like a group of dancers in a ballroom dancing to the same beat but performing their own steps.

As two particles approach one another, they synchronize their motions and begin spinning around a shared center, facing opposite directions, similar to the way a couple dancing together falls in step looking at one another.

"They are both magnetized, which causes them to attract each other, but because they're moving, they have to move in sync," said Erik Luijten, a professor of materials science and engineering and of applied mathematics at Northwestern University who co-led the research with Granick.

Soon, the pairs and clusters of dancing spheres assemble themselves into a microtube - a long, hollow structure. The entire tube spins, even as each individual sphere continues its motion as well, like dancers in a line dance completing their individual steps as the line moves.

"It's spontaneous. We don't force it to form," said U. of I. graduate student Jing Yan, the first author of the paper. "We saw that during the self-assembly process, the synchronization also happens. If you look at the spheres, every one is doing a different thing. Only when they come in close contact will they do something cooperatively. The two concepts are intricately related in this system."

Now that the researchers have detailed the delicate choreography of synchronization and self-assembly, they hope to explore applications for this new class of moving structures. One potential application of a dynamic, self-assembled microtube is to transport and release cargo. A particle or collection of molecules could be encapsulated in the tube and transported to a different location. Then, the tube can be disintegrated, releasing the cargo at a target point.

"We're looking for the new applications that people haven't dreamt up yet because they didn't have the capability," said Granick, a professor of materials science and engineering.

Next, the researchers are working to further understand the properties governing synchronized self-assembly and ways to guide it for functionality, such as manipulating the structures with an electrical or magnetic field. They also plan to explore directing the Janus spheres to synchronized self-assembly of other shapes and structures, allowing even more applications.

"Traditionally in self-assembly, you make a specific building block that will organize into a specific structure," Luijten said. "If you want a different structure you have to make a different building block. Here now, with one building block, we can control the structure by exploiting the synchronization effect."

The U.S. Army Research Office, the Department of Energy and the National Science Foundation supported this work. U. of I. research scientist Sung Chul Bae and Northwestern University graduate student Moses Bloom were co-authors of the paper. Granick also is affiliated with the Frederick Seitz Materials Research Laboratory and with the departments of chemistry, physics, biophysics, and chemical and biomolecular engineering at Illinois. Luijten also is associated with the department of engineering sciences πat Northwestern University.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1079


Steve Granick
217-333-5720


Erik Luijten
847-491-4097

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Physics

Physicists Use Computer Models to Reveal Quantum Effects in Biological Oxygen Transport: The team solved a long-standing question by explaining why oxygen – and not deadly carbon monoxide – preferably binds to the proteins that transport it around the body. July 17th, 2014

Flashes of light on the superconductor: Using light to modulate the properties of a copper-based superconductor July 15th, 2014

Weizmann Institute scientists take another step down the long road toward quantum computers July 14th, 2014

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Self Assembly

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Design of self-assembling protein nanomachines starts to click: A nanocage builds itself from engineered components June 5th, 2014

Molecular self-assembly scales up from nanometers to millimeters June 5th, 2014

Nano world: Where towers construct themselves: How physicists get control on the self-assembly process June 2nd, 2014

Discoveries

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Materials/Metamaterials

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Announcements

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Military

Nano-sized Chip "Sniffs Out" Explosives Far Better than Trained Dogs: TAU researcher's groundbreaking sensor detects miniscule concentrations of hazardous materials in the air July 23rd, 2014

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Future Electronics May Depend on Lasers, Not Quartz July 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE