Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New structures self-assemble in synchronized dance

Photo by
L. Brian Stauffer

Researchers from the University of Illinois and Northwestern University demonstrated tiny spheres that synchronize their movements as they self-assemble into a spinning microtube. From left, Erik Luijten, Jing Yan, Steve Granick and Sung Chul Bae.
Photo by L. Brian Stauffer

Researchers from the University of Illinois and Northwestern University demonstrated tiny spheres that synchronize their movements as they self-assemble into a spinning microtube. From left, Erik Luijten, Jing Yan, Steve Granick and Sung Chul Bae.

Abstract:
With self-assembly guiding the steps and synchronization providing the rhythm, a new class of materials forms dynamic, moving structures in an intricate dance.

New structures self-assemble in synchronized dance

Champaign, IL | Posted on November 21st, 2012

Researchers from the University of Illinois and Northwestern University have demonstrated tiny spheres that synchronize their movements as they self-assemble into a spinning microtube. Such in-motion structures, a blending of mathematics and materials science, could open a new class of technologies with applications in medicine, chemistry and engineering. The results will be published in the Nov. 22 edition of the journal Nature.

"The world's concept of self-assembly has been to think of static structures - something you would see in a still image," said Steve Granick, the Founder Professor of Engineering at the U. of I. and a co-leader of the study. "We want shape-shifting structures. Structures where a photograph doesn't tell you what matters. It's like the difference between a photograph and a movie."

The researchers used tiny particles called Janus spheres, named after the Roman god with two faces, which Granick's group developed and previously demonstrated for self-assembly of static structures. In this study, one half of each sphere is coated with a magnetic metal. When dispersed in solution and exposed to a rotating magnetic field, each sphere spins in a gyroscopic motion. They spin at the same frequency but all face a different direction, like a group of dancers in a ballroom dancing to the same beat but performing their own steps.

As two particles approach one another, they synchronize their motions and begin spinning around a shared center, facing opposite directions, similar to the way a couple dancing together falls in step looking at one another.

"They are both magnetized, which causes them to attract each other, but because they're moving, they have to move in sync," said Erik Luijten, a professor of materials science and engineering and of applied mathematics at Northwestern University who co-led the research with Granick.

Soon, the pairs and clusters of dancing spheres assemble themselves into a microtube - a long, hollow structure. The entire tube spins, even as each individual sphere continues its motion as well, like dancers in a line dance completing their individual steps as the line moves.

"It's spontaneous. We don't force it to form," said U. of I. graduate student Jing Yan, the first author of the paper. "We saw that during the self-assembly process, the synchronization also happens. If you look at the spheres, every one is doing a different thing. Only when they come in close contact will they do something cooperatively. The two concepts are intricately related in this system."

Now that the researchers have detailed the delicate choreography of synchronization and self-assembly, they hope to explore applications for this new class of moving structures. One potential application of a dynamic, self-assembled microtube is to transport and release cargo. A particle or collection of molecules could be encapsulated in the tube and transported to a different location. Then, the tube can be disintegrated, releasing the cargo at a target point.

"We're looking for the new applications that people haven't dreamt up yet because they didn't have the capability," said Granick, a professor of materials science and engineering.

Next, the researchers are working to further understand the properties governing synchronized self-assembly and ways to guide it for functionality, such as manipulating the structures with an electrical or magnetic field. They also plan to explore directing the Janus spheres to synchronized self-assembly of other shapes and structures, allowing even more applications.

"Traditionally in self-assembly, you make a specific building block that will organize into a specific structure," Luijten said. "If you want a different structure you have to make a different building block. Here now, with one building block, we can control the structure by exploiting the synchronization effect."

The U.S. Army Research Office, the Department of Energy and the National Science Foundation supported this work. U. of I. research scientist Sung Chul Bae and Northwestern University graduate student Moses Bloom were co-authors of the paper. Granick also is affiliated with the Frederick Seitz Materials Research Laboratory and with the departments of chemistry, physics, biophysics, and chemical and biomolecular engineering at Illinois. Luijten also is associated with the department of engineering sciences πat Northwestern University.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1079


Steve Granick
217-333-5720


Erik Luijten
847-491-4097

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Physics

Record-high pressure reveals secrets of matter: The most incompressible metal osmium at static pressures above 750 GPa August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Biophysics: Formation of swarms in nanosystems August 18th, 2015

Attosecond physics: Attosecond electron catapult: Physicists from Ludwig-Maximilians-Universität (LMU) in Munich studied the interaction of light with tiny glass particles August 15th, 2015

Govt.-Legislation/Regulation/Funding/Policy

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Glitter from silver lights up Alzheimer's dark secrets August 25th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Possible Futures

Sediment dwelling creatures at risk from nanoparticles in common household products August 13th, 2015

Harris & Harris Group Reports Financial Statements as of June 30, 2015, and Announces a Stock Repurchase Program August 10th, 2015

Molecular trick alters rules of attraction for non-magnetic metals August 5th, 2015

Global Carbon Nanotubes Industry 2015: Acute Market Reports August 4th, 2015

Self Assembly

Louisiana Tech University researchers discover synthesis of a new nanomaterial: Interdisciplinary team creates biocomposite for first time using physiological conditions August 24th, 2015

Novel nanostructures for efficient long-range energy transport August 21st, 2015

Biophysics: Formation of swarms in nanosystems August 18th, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Discoveries

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Materials/Metamaterials

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Quantum diffraction at a breath of nothing: Physicists build stable diffraction structure in atomically thin graphene August 25th, 2015

Announcements

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Military

These microscopic fish are 3-D-printed to do more than swim: Researchers demonstrate a novel method to build microscopic robots with complex shapes and functionalities August 26th, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

Industrial Nanotech, Inc. Provides Update On Hospital Project, PCAOB Audit, and New Heat Shield™ Line August 24th, 2015

Graphene oxide's secret properties revealed at atomic level: A research team found that graphene oxide's inherent defects give rise to a surprising mechanical property August 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic