Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers build synthetic membrane channels out of DNA: Nanotech structures mimic nature's way of tunneling through cell walls

This 3-D print shows the structure of a functional synthetic membrane channel constructed through DNA nanotechnology -- that is, using DNA molecules as programmable building materials for custom-designed, self-assembling nanometer-scale structures. This DNA-based membrane channel consists of a needle-like stem 42 nanometers long with an internal diameter of just two nanometers, partly sheathed by a barrel-shaped cap. A ring of cholesterol units around the edge of the cap helps the device "dock" to a lipid membrane while the stem sticks through it, forming a channel that appears capable of behaving like a biological ion channel. The device is formed by 54 double-helical DNA domains on a honeycomb lattice.

Credit: Dietz Lab, TU Muenchen; copyright TU Muenchen
This 3-D print shows the structure of a functional synthetic membrane channel constructed through DNA nanotechnology -- that is, using DNA molecules as programmable building materials for custom-designed, self-assembling nanometer-scale structures. This DNA-based membrane channel consists of a needle-like stem 42 nanometers long with an internal diameter of just two nanometers, partly sheathed by a barrel-shaped cap. A ring of cholesterol units around the edge of the cap helps the device "dock" to a lipid membrane while the stem sticks through it, forming a channel that appears capable of behaving like a biological ion channel. The device is formed by 54 double-helical DNA domains on a honeycomb lattice.

Credit: Dietz Lab, TU Muenchen; copyright TU Muenchen

Abstract:
As reported in the journal Science, physicists at the Technische Universitaet Muenchen (TUM) and the University of Michigan have shown that synthetic membrane channels can be constructed through "DNA nanotechnology." This technique employs DNA molecules as programmable building materials for custom-designed, self-assembling, nanometer-scale structures. The researchers present evidence that their nature-inspired nanostructures may also behave like biological ion channels. Their results could mark a step toward applications of synthetic membrane channels as molecular sensors, antimicrobial agents, and drivers of novel nanodevices.

Researchers build synthetic membrane channels out of DNA: Nanotech structures mimic nature's way of tunneling through cell walls

Munich, Germany | Posted on November 20th, 2012

Over the past three decades, researchers have advanced DNA nanotechnology from an intriguing idea to an emerging technology, with a toolbox of methods and a portfolio of nanometer-scale objects designed to demonstrate its potential. What's new here is the claim that DNA nanotech can be used to mimic one of the most widespread and important nanomachines in nature.

To wall off the insides of cells from the outside world, organisms in all three domains of life use the same kind of barrier: an impermeable membrane made from two layers of lipid molecules. Such membranes can also be found within cells, for example encapsulating the nucleus, and even surrounding many kinds of viruses. And to mediate between the different environments on either side of this universal barrier, nature provides a common type of passageway. Membrane channels are tube-like structures made of proteins, which pierce the barriers and regulate the two-way exchange of material and information between the inside and outside. Now researchers have demonstrated the first artificial membrane channel made entirely of DNA, and its characteristics suggest a number of potential applications. "If you want, for example, to inject something into a cell, you have to find a way to punch a hole into the cell membrane, and this device can do that, at least with model cell membranes," says TUM Prof. Hendrik Dietz, a fellow of the TUM Institute for Advanced Study.

In a shape inspired by a natural channel protein, the DNA-based membrane channel consists of a needle-like stem 42 nanometers long with an internal diameter of just two nanometers, partly sheathed by a barrel-shaped cap. A ring of cholesterol units around the edge of the cap helps the device "dock" to a lipid membrane while the stem sticks through it, forming a channel that appears to function like the real thing. TUM Professor Friedrich Simmel, co-coordinator of the Excellence Cluster Nanosystems Initiative Munich, explains: "We have not tested this yet with living cells, but experiments with lipid vesicles show that our synthetic device will bind to a bilayer lipid membrane in the right orientation, so that the stem both penetrates the membrane and holds at the surface, forming a pore."

Further experiments demonstrated that the resulting pores have electrical conductivity comparable to that of a natural cell wall with ion channels, suggesting that they might be able to act like voltage-controlled gates. The results also suggest that transmembrane current could be tuned by adjusting fine structural details of the synthetic channels. To test one potential application of the DNA nanotech devices, the researchers used them as "nanopores" for several different molecular sensing experiments. These confirmed that it is possible, by observing changes in the electrical characteristics, to record the passage of single molecules through synthetic membrane channels made from DNA. Because this approach allows both geometric and chemical tailoring of the membrane channels, it might offer advantages over two other families of molecular sensors, based on biological and solid-state nanopores respectively.

Other conceivable applications remain to be investigated. One notion is to imitate the action of viruses or phages, breaking through the cell walls of targeted bacteria to kill them. In gene therapy, synthetic membrane channels might be used as nano-needles to inject material into cells. Such channels could also be used in basic studies of cell metabolism. Another idea is to harness the so-called ion flux — which in cell membranes moves material in and out through the channel — to drive sophisticated nanodevices inspired by other natural mechanisms. "We might be able to mimic natural ion pumps, transport proteins, and rotary motors like the enzyme responsible for synthesizing ATP," says Dietz. "I love that idea. That's what keeps me running."
###

This work was supported by the German Research Foundation (DFG) via the TUM Institute for Advanced Study, Excellence Clusters NIM (Nanosystems Initiative Munich) and CIPSM (Center for Integrated Protein Science Munich), and SFB 863; by the Federal Ministry of Education and Research (BMBF, Grant 13N10970); by the European Research Council (Dietz, Starting Grant GA256270); and by the National Institutes of Health (Mayer, Grant 1R01GM081705).

Original publication:

Martin Langecker*, Vera Arnaut*, Thomas G. Martin*, Jonathan List, Stephan Renner, Michael Mayer, Hendrik Dietz°, and Friedrich C. Simmel°. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science, vol. 338, issue 6109, pp. 932-936. DOI: 10.1126/science.1225624 (* equal contribution authors; ° co-corresponding authors)

####

About Technische Universitaet Muenchen
Technische Universitaet Muenchen (TUM) is one of Europe's leading universities. It has roughly 480 professors, 9000 academic and non-academic staff, and 31,000 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Excellence University" in 2006 and 2012 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university's global network includes an outpost with a research campus in Singapore. TUM is dedicated to the ideal of a top-level research-based entrepreneurial university.

For more information, please click here

Contacts:
Patrick Regan

49-892-891-0515

Prof. Hendrik Dietz
Technische Universitaet Muenchen
Physics Dept., Walter Schottky Institute / ZNN
Am Coulombwall 4a
85748 Garching, Germany
Tel: +49 89 289 11615

Web: bionano.physik.tu-muenchen.de/

Prof. Friedrich Simmel
Technische Universitaet Muenchen
Physics Dept., Walter Schottky Institute / ZNN
Am Coulombwall 4a
85748 Garching, Germany
Tel: +49 89 289 11611

Web: www.e14.ph.tum.de

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEI’s Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Molecular Machines

Legions of nanorobots target cancerous tumors with precision: Administering anti-cancer drugs redefined August 16th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Pushing a single-molecule switch: An international team of researchers from Donostia International Physics Center, Fritz-Haber Institute of the Max Planck Society, University of Liverpool, and the Polish Academy of Sciences has shown a new way to operate a single-molecule switch July 19th, 2016

Researchers harness DNA as the engine of super-efficient nanomachine: New platform detects traces of everything from bacteria to viruses, cocaine and metals July 10th, 2016

Molecular Nanotechnology

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

DNA dominos on a chip: Carriers of genetic information packed together on a biochip like in nature August 11th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Self Assembly

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016

Nanomedicine

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

50 years after the release of the film 'Fantastic Voyage,' science upstages fiction: Science upstages fiction with nanorobotic agents designed to travel in the human body to treat cancer August 25th, 2016

Sensors

Graphene key to growing 2-dimensional semiconductor with extraordinary properties August 30th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Discoveries

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEI’s Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Announcements

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEI’s Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Research partnerships

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic