Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Making ‘nanospinning’ practical --Nanofibers have a dizzying range of possible applications, but they’ve been prohibitively expensive to make. MIT researchers hope to change that.

Abstract:
Nanofibers — strands of material only a couple hundred nanometers in diameter — have a huge range of possible applications: scaffolds for bioengineered organs, ultrafine air and water filters, and lightweight Kevlar body armor, to name just a few. But so far, the expense of producing them has consigned them to a few high-end, niche applications.

Making ‘nanospinning’ practical --Nanofibers have a dizzying range of possible applications, but they’ve been prohibitively expensive to make. MIT researchers hope to change that.

Cambridge, MA | Posted on November 19th, 2012

Luis Velásquez-García, a principal research scientist at MIT's Microsystems Technology Laboratories, and his group hope to change that. At the International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications in December, Velásquez-García, his student Philip Ponce de Leon, and Frances Hill, a postdoc in his group, will describe a new system for spinning nanofibers that should offer significant productivity increases while drastically reducing power consumption.

Using manufacturing techniques common in the microchip industry, the MTL researchers built a one-square-centimeter array of conical tips, which they immersed in a fluid containing a dissolved plastic. They then applied a voltage to the array, producing an electrostatic field that is strongest at the tips of the cones. In a technique known as electrospinning, the cones eject the dissolved plastic as a stream that solidifies into a fiber only 220 nanometers across.

In their experiments, the researchers used a five-by-five array of cones, which already yields a sevenfold increase in productivity per square centimeter over even the best existing methods. But, Velásquez-García says, it should be relatively simple to pack more cones onto a chip, boosting productivity even more. Indeed, he says, in prior work on a similar technique called electrospray, his lab was able to cram almost a thousand emitters into a single square centimeter. And multiple arrays could be combined in a panel to further increase yields.

Because the new paper was prepared for an energy conference, it focuses on energy applications. But nanofibers could be useful for any device that needs to maximize the ratio of surface area to volume, Velásquez-García says. Capacitors — circuit components that store electricity — are one example, because capacitance scales with surface area. The electrodes used in fuel cells are another, because the greater the electrodes' surface area, the more efficiently they catalyze the reactions that drive the cell. But almost any chemical process can benefit from increasing catalysts' surface area, and increasing the surface area of artificial-organ scaffolds gives cells more points at which to adhere.

Another promising application of nanofibers is in meshes so fine that they allow only nanoscale particles to pass through. The example in the new paper again comes from energy research: the membranes that separate the halves of a fuel cell. But similar meshes could be used to filter water. Such applications, Velásquez-García says, depend crucially on consistency in the fiber diameter, another respect in which the new technique offers advantages over its predecessors.

Existing electrospinning techniques generally rely on tiny nozzles, through which the dissolved polymer is forced. Variations in operating conditions and in the shape of the nozzles can cause large variation in the fiber diameter, and the nozzles' hydraulics mean that they can't be packed as tightly together. A few manufacturers have developed fiber-spinning devices that use electrostatic fields, but their emitters are made using much cruder processes than the chip-manufacturing techniques that the MTL researchers exploited. As a consequence, not only are the arrays of tips much less dense, but the devices consume more power.

"The electrostatic field is enhanced if the tip diameter is smaller," Velásquez-García says. "If you have tips of, say, millimeter diameter, then if you apply enough voltage, you can trigger the ionization of the liquid and spin fibers. But if you can make them sharper, then you need a lot less voltage to achieve the same result."

The use of microfabrication technologies not only allowed the MTL researchers to pack their cones more tightly and sharpen their tips, but it also gave them much more precise control of the structure of the cones' surfaces. Indeed, the sides of the cones have a nubby texture that helps the cones wick up the fluid in which the polymer is dissolved. In ongoing experiments, the researchers have also covered the cones with what Velásquez-García describes as a "wool" of carbon nanotubes, which should work better with some types of materials.

Indeed, Velásquez-García says, his group's results depend not only on the design of the emitters themselves, but on a precise balance between the structure of the cones and their textured coating, the strength of the electrostatic field, and the composition of the fluid bath in which the cones are immersed.

The MIT researchers' work was funded in part by the U.S. Defense Advanced Research Projects Agency.

Written by Larry Hardesty, MIT News Office

####

For more information, please click here

Contacts:
Caroline McCall
MIT News Office
E:
T: 617-253-1682

Copyright © MIT

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Harper Government Supports Research Innovation in Western Canada January 22nd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Nanomedicine

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

A spoonful of sugar in silver nanoparticles to regulate their toxicity January 21st, 2015

Discoveries

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Materials/Metamaterials

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Silver nanowires demonstrate unexpected self-healing mechanism: The material has potential for flexible electronics January 23rd, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Military

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

Solving an organic semiconductor mystery: Berkeley Lab researchers uncover hidden structures in domain interfaces that hamper performance January 16th, 2015

Environment

Magnetic Nanosorbents Able to Eliminate Chemical Contaminants January 19th, 2015

Malaysian Nanotechnology Company Nanopac Innovation Ltd. lists on the NSX January 19th, 2015

Iran Designs Magnetic Nano-Absorbents Cleaning Chemical Pollutants January 11th, 2015

Cheap asphalt provides 'green' carbon capture: Rice University chemists' product aims to enhance natural gas production at sea January 7th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE