Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ORNL recipe for oxide interface perfection opens path to novel materials

Abstract:
By tweaking the formula for growing oxide thin films, researchers at the Department of Energy's Oak Ridge National Laboratory achieved virtual perfection at the interface of two insulator materials.

ORNL recipe for oxide interface perfection opens path to novel materials

Oak Ridge, TN | Posted on November 17th, 2012

This finding, published in the journal Advanced Materials, could have significant ramifications for creation of novel materials with applications in energy and information technologies, leading to more efficient solar cells, batteries, solid oxide fuel cells, faster transistors and more powerful capacitors.

The research team, led by ORNL's Ho Nyung Lee, demonstrated that a single unit cell layer of lanthanum aluminate grown on a strontium titanate substrate is sufficient to stabilize a chemically and atomically sharp interface. A unit cell is the smallest group of atoms that possess the properties of a crystalline material.

"This means that we can now create new properties by precisely conditioning the boundary in the process of stacking different oxides on top of each other," said Lee, a member of the Materials Science and Technology Division.

What's especially noteworthy is that a layer even one unit cell thick could serve as a buffer and dramatically improve the interface quality.

For this research, Lee and colleagues used pulsed laser deposition to deposit lanthanum aluminate thin films on strontium titanate substrates. They were able to demonstrate that a mundane variable such as the oxygen pressure during deposition of lanthanum aluminate is the key factor for achieving atomically sharp interfaces and changing the interface properties on a single unit cell level. Importantly, this finding is not limited to fine-tuning this particular interface, but also applies to a broad range of oxide heterostructures in a class of minerals known as perovskites.

The discovery of electrical properties in oxides - ordinarily insulators - has generated excitement and potentially creates the possibility that oxide electronics could become an alternative to the current semiconductor technology based on silicon.

Making this finding possible was Argonne National Laboratory's Advanced Photon Source and the extreme brightness of synchrotrons that allowed scientists to study the structure and composition at the interface.

"The sophisticated surface X-ray diffraction methods available at the Advanced Photon Source were key to zeroing in on the origin of the interface behavior," said co-author and colleague Gyula Eres.

While previous research with lanthanum aluminate thin film growth used low oxygen pressures, Lee and colleagues systematically explored the effects of oxygen pressure in a wide range. They determined that a shielding layer of lanthanum aluminate grown at high oxygen pressure followed by continued growth at a lower pressure resulted in a highly ordered atomically and chemically sharp - essentially defect-free -- interface.

Other ORNL authors of the paper, titled "Atomic Layer Engineering of Perovskite Oxides for Chemically Sharp Heterointerfaces," are Woo Seok Choi, the first author, Christopher Rouleau and Sung Seok Seo. Other institutions contributing to the paper are the University of Kentucky, Argonne National Laboratory and the University of Science and Technology of China.

Funding for this research was provided by the DOE Office of Science, which also supports the Advanced Photon Source. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov. UT-Battelle manages ORNL for DOE's Office of Science.

####

For more information, please click here

Contacts:
Ron Walli

865-576-0226

Copyright © DOE/Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Laboratories

Working under pressure: Diamond micro-anvils with huge pressures will create new materials October 19th, 2016

Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge October 15th, 2016

Scientists Find Static "Stripes" of Electrical Charge in Copper-Oxide Superconductor: Fixed arrangement of charges coexists with material's ability to conduct electricity without resistance October 14th, 2016

Tomoyasu Mani Wins 2016 Blavatnik Regional Award for Young Scientists: Award recognizes his work at Brookhaven Lab to understand the physical processes occurring in organic materials used to harness solar energy October 13th, 2016

Nexeon Establishes Base in Asia October 11th, 2016

Thin films

Ultra-thin ferroelectric material for next-generation electronics October 12th, 2016

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Chip Technology

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Scientists shrink electron gun to matchbox size: Terahertz technology has the potential to enable new applications November 25th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

Discoveries

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

A Phone That Charges in Seconds? UCF Scientists Bring it Closer to Reality November 21st, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Vesper a Finalist for Two ACE Awards: Ultimate Products and Innovator of the Year -- Industry’s first piezoelectric MEMS microphone and Vesper CTO Bobby Littrell recognized for prestigious electronics-industry awards November 10th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Fuel Cells

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Iowa State engineers treat printed graphene with lasers to enable paper electronics September 2nd, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project