Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > ORNL pushes the boundaries of electron microscopy to unlock the potential of graphene

The atomic resolution Z-contrast images show individual silicon atoms bonded differently in graphene.
The atomic resolution Z-contrast images show individual silicon atoms bonded differently in graphene.

Abstract:
Electron microscopy at the Department of Energy's Oak Ridge National Laboratory is providing unprecedented views of the individual atoms in graphene, offering scientists a chance to unlock the material's full potential for uses from engine combustion to consumer electronics.

ORNL pushes the boundaries of electron microscopy to unlock the potential of graphene

Oak Ridge, TN | Posted on November 16th, 2012

Graphene crystals were first isolated in 2004. They are two-dimensional (one-atom in thickness), harder than diamonds and far stronger than steel, providing unprecedented stiffness, electrical and thermal properties. By viewing the atomic and bonding configurations of individual graphene atoms, scientists are able to suggest ways to optimize materials so they are better suited for specific applications.

In a paper published in Physical Review Letters, a team of researchers from Oak Ridge National Laboratory and Vanderbilt University used aberration-corrected scanning transmission electron microscopy to study the atomic and electronic structure of silicon impurities in graphene.

"We have used new experimental and computational tools to reveal the bonding characteristics of individual impurities in graphene. For instance, we can now differentiate between a non-carbon atom that is two-dimensionally or three-dimensionally bonded in graphene. In fact, we were finally able to directly visualize a bonding configuration that was predicted in the 1930s but has never been observed experimentally," said ORNL researcher Juan-Carlos Idrobo. Electrons in orbit around an atom fall into four broad categories - s, p, d and f - based on factors including symmetry and energy levels.

"We observed that silicon d-states participate in the bonding only when the silicon is two-dimensionally coordinated," Idrobo said. "There are many elements such as chromium, iron, and copper where the d-states or d-electrons play a dominant role in determining how the element bonds in a material."

By studying the atomic and electronic structure of graphene and identifying any impurities, researchers can better predict which elemental additions will improve the material's performance.

Slightly altering the chemical makeup of graphene could customize the material, making it more suitable for a variety of applications. For example, one elemental addition may make the material a better replacement for the platinum catalytic converters in cars, while another may allow it to function better in electronic devices or as a membrane.

Graphene has the potential to replace the inner workings of electronic gadgets people use every day because of its ability to conduct heat and electricity and its optical transparency. It offers a cheaper and more abundant alternative to indium, a limited resource that is widely used in the transparent conducting coating present in almost all electronic display devices such as digital displays in cars, TVs, laptops and handheld gadgets like cell phones, tablets and music players.

Researchers expect the imaging techniques demonstrated at ORNL to be used to understand the atomic structures and bonding characteristics of atoms in other two-dimensional materials, too.

The authors of the paper are Wu Zhou, Myron Kapetanakis, Micah Prange, Sokrates Pantelides, Stephen Pennycook and Idrobo.

This research was supported by National Science Foundation and the DOE Office of Science. Researchers also made use of Oak Ridge National Laboratory's Shared Research Equipment User Facility along with Lawrence Berkeley National Laboratory's National Energy Research Scientific Computing Center, both of which are also supported by DOE's Office of Science.

####

About DOE/Oak Ridge National Laboratory
ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Jennifer Brouner

865-241-9515

Copyright © DOE/Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Graphene/ Graphite

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Nanoribbons in solutions mimic nature: Rice University scientists test graphene ribbons' abilities to integrate with biological systems August 15th, 2016

Laboratories

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Scientists uncover origin of high-temperature superconductivity in copper-oxide compound: Analysis of thousands of samples reveals that the compound becomes superconducting at an unusually high temperature because local electron pairs form a 'superfluid' that flows without resist August 19th, 2016

Display technology/LEDs/SS Lighting/OLEDs

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Chip Technology

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Materials/Metamaterials

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Semblant to Present at China Mobile Manufacturing Forum 2016 August 25th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Automotive/Transportation

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Researchers watch catalysts at work August 19th, 2016

Stanford-led team reveals nanoscale secrets of rechargeable batteries August 8th, 2016

New X-Ray microscopy technique images nanoscale workings of rechargeable batteries: Method developed at Berkeley Lab's Advanced Light Source could help researchers improve battery performance August 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic