Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Computer Memory Could Increase Fivefold From UT Research

Abstract:
The storage capacity of hard disk drives could increase by a factor of five thanks to processes developed by chemists and engineers at The University of Texas at Austin.

Computer Memory Could Increase Fivefold From UT Research

Austin, TX | Posted on November 14th, 2012

The researchers' technique, which relies on self-organizing substances known as block copolymers, was described this week in an article in Science. It's also being given a real-world test run in collaboration with HGST, one of the world's leading innovators in disk drives.

"In the last few decades there's been a steady, exponential increase in the amount of information that can be stored on memory devices, but things have now reached a point where we're running up against physical limits," said C. Grant Willson, professor of chemistry and biochemistry in the College of Natural Sciences and the Rashid Engineering Regents Chair in the Cockrell School of Engineering.

With current production methods, zeroes and ones are written as magnetic dots on a continuous metal surface. The closer together the dots are, the more information can be stored in the same area. But that tactic has been pretty much maxed out. The dots have now gotten so close together that any further increase in proximity would cause them to be affected by the magnetic fields of their neighboring dots and become unstable.

"The industry is now at about a terabit of information per square inch," said Willson, who co-authored the paper with chemical engineering professor Christopher Ellison and a team of graduate and undergraduate students. "If we moved the dots much closer together with the current method, they would begin to flip spontaneously now and then, and the archival properties of hard disk drives would be lost. Then you're in a world of trouble. Can you imagine if one day your bank account info just changed spontaneously?"

There's a quirk in the physics, however. If the dots are isolated from one another, with no magnetic material between them, they can be pushed closer together without destabilization.

This is where block copolymers come in. At room temperature, coated on a disk surface, they don't look like much. But if they're designed in the right way, and given the right prod, they'll self-assemble into highly regular patterns of dots or lines. If the surface onto which they're coated already has some guideposts etched into it, the dots or lines will form into precisely the patterns needed for a hard disk drive.

This process, which is called directed self-assembly (DSA), was pioneered by engineers at the University of Wisconsin and the Massachusetts Institute of Technology.

When Willson, Ellison and their students began working with directed self-assembly, the best anyone in the field had done was to get the dots small enough to double the storage density of disk drives. The challenge has been to shrink the dots further and to find processing methods that are compatible with high-throughput production.

The team has made great progress on a number of fronts. They've synthesized block copolymers that self-assemble into the smallest dots in the world. In some cases they form into the right, tight patterns in less than a minute, which is also a record.

"I am kind of amazed that our students have been able to do what they've done," said Willson. "When we started, for instance, I was hoping that we could get the processing time under 48 hours. We're now down to about 30 seconds. I'm not even sure how it is possible to do it that fast. It doesn't seem reasonable, but once in a while you get lucky."

Most significantly, the team has designed a special top coat that goes over the block copolymers while they are self-assembling.

"I've been fortunate enough to be involved in the experimental work of the top coat project from its inception all the way to our final results," said Leon Dean, a senior chemical engineering major and one of the authors on the Science paper. "We've had to develop an innovative spin-on top coat for neutralizing the surface energy at the top interface of a block copolymer film."

This top coat allows the polymers to achieve the right orientation relative to the plane of the surface simply by heating.

"The patterns of super small dots can now self-assemble in vertical or perpendicular patterns at smaller dimensions than ever before," said Thomas Albrecht, manager of patterned media technology at HGST. "That makes them easier to etch into the surface of a master plate for nanoimprinting, which is exactly what we need to make patterned media for higher capacity disk drives."

Willson, Ellison and their students are currently working with HGST to see whether these advances can be adapted to their products and integrated into a mainstream manufacturing process.

Other industry collaborators are Nissan Chemical Company, which partially funded the research, and Molecular Imprints, an Austin-based company co-founded by Willson that is a pioneer in nanoimprint lithography.

####

For more information, please click here

Contacts:
Daniel Oppenheimer
College of Natural Sciences
512 745 3353


C. Grant Willson
Department of Chemistry and Biochemistry
(512) 471-4342

Copyright © University of Texas at Austin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Possible Futures

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Memory Technology

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Better memory with faster lasers July 14th, 2015

Self Assembly

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Imec introduces self-assembled monomolecular organic films to seal ultra-porous low- k materials: Method prevents leakage of barrier precursors during the interconnect metallization scheme July 15th, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Printing/Lithography/Inkjet/Inks

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

2015 Bulk Graphene Pricing Webinar:The Graphene Council to Host Webinar in Collaboration with Fullerex July 15th, 2015

Leti and EVG Launch INSPIRE, a Lithography Program Aimed At Demonstrating Benefits of Nano-imprint Technology July 15th, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project