Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Human eye gives researchers visionary design for new, more natural lens technology

This shows fabricated lens images (a and d) and measured geometry surface profiles (b/c and e/f) of the aspheric anterior and posterior bio-inspired human eye GRIN lenses.

Credit: Optics Express
This shows fabricated lens images (a and d) and measured geometry surface profiles (b/c and e/f) of the aspheric anterior and posterior bio-inspired human eye GRIN lenses.

Credit: Optics Express

Abstract:
Drawing heavily upon nature for inspiration, a team of researchers has created a new artificial lens that is nearly identical to the natural lens of the human eye. This innovative lens, which is made up of thousands of nanoscale polymer layers, may one day provide a more natural performance in implantable lenses to replace damaged or diseased human eye lenses, as well as consumer vision products; it also may lead to superior ground and aerial surveillance technology.

Human eye gives researchers visionary design for new, more natural lens technology

Washington, DC | Posted on November 13th, 2012

This work, which the Case Western Reserve University, Rose-Hulman Institute of Technology, U.S. Naval Research Laboratory, and PolymerPlus team describes in the Optical Society's (OSA) open-access journal Optics Express, also provides a new material approach for fabricating synthetic polymer lenses.

The fundamental technology behind this new lens is called "GRIN" or gradient refractive index optics. In GRIN, light gets bent, or refracted, by varying degrees as it passes through a lens or other transparent material. This is in contrast to traditional lenses, like those found in optical telescopes and microscopes, which use their surface shape or single index of refraction to bend light one way or another.

"The human eye is a GRIN lens," said Michael Ponting, polymer scientist and president of PolymerPlus, an Ohio-based Case Western Reserve spinoff launched in 2010. "As light passes from the front of the human eye lens to the back, light rays are refracted by varying degrees. It's a very efficient means of controlling the pathway of light without relying on complicated optics, and one that we attempted to mimic."

The first steps along this line were taken by other researchers[1, 2] and resulted in a lens design for an aging human eye, but the technology did not exist to replicate the gradual evolution of refraction.

The research team's new approach was to follow nature's example and build a lens by stacking thousands and thousands of nanoscale layers, each with slightly different optical properties, to produce a lens that gradually varies its refractive index, which adjusts the refractive properties of the polymer.

"Applying naturally occurring material architectures, similar to those found in the layers of butterfly wing scales, human tendons, and even in the human eye, to multilayered plastic systems has enabled discoveries and products with enhanced mechanical strength, novel reflective properties, and optics with enhanced power," explains Ponting.

To make the layers for the lens, the team used a multilayer-film coextrusion technique (a common method used to produce multilayer structures). This fabrication technique allows each layer to have a unique refractive index that can then be laminated and shaped into GRIN optics.

It also provides the freedom to stack any combination of the unique refractive index nanolayered films. This is extremely significant and enabled the fabrication of GRIN optics previously unattainable through other fabrication techniques.

GRIN optics may find use in miniaturized medical imaging devices or implantable lenses. "A copy of the human eye lens is a first step toward demonstrating the capabilities, eventual biocompatible and possibly deformable material systems necessary to improve the current technology used in optical implants," Ponting says.

Current generation intraocular replacement lenses, like those used to treat cataracts, use their shape to focus light to a precise prescription, much like contacts or eye glasses. Unfortunately, intraocular lenses never achieve the same performance of natural lenses because they lack the ability to incrementally change the refraction of light. This single-refraction replacement lens can create aberrations and other unwanted optical effects.

And the added power of GRIN also enables optical systems with fewer components, which is important for consumer vision products and ground- and aerial-based military surveillance products.

This technology has already moved from the research labs of Case Western Reserve to PolymerPlus for commercialization. "Prototype and small batch fabrication facilities exist and we're working toward selecting early adoption applications for nanolayered GRIN technology in commercial devices," notes Ponting.

References:

1. J. A. Díaz, C. Pizarro, and J. Arasa, "Single dispersive gradient-index profile for the aging human eye lens," J. Opt. Soc. Am. A 25, 250-261 (2008).

2. C.E. Campbell, "Nested shell optical model of the lens of the human eye," J. Opt. Soc. Am. A 27, 2432-2441 (2010).

####

About Optical Society of America
Uniting more than 180,000 professionals from 175 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics.

About Optics Express

Optics Express reports on new developments in all fields of optical science and technology every two weeks. The journal provides rapid publication of original, peer-reviewed papers. It is published by the Optical Society and edited by C. Martijn de Sterke of the University of Sydney. Optics Express is an open-access journal and is available at no cost to readers online at www.OpticsInfoBase.org/OE.

For more information, please click here

Contacts:
Angela Stark

202-416-1443

Copyright © Optical Society of America

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: "A Bio-Inspired Polymeric Gradient Refractive Index Human Eye Lens," Optics Express, Vol. 20, Issue 24, pp. 26746-26754 (2012)

Related News Press

News and information

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Nanomedicine

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Discoveries

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Announcements

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Photonics/Optics/Lasers

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Controlled electron pulses November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project