Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Plasmonic biosensors with artificial antibodies

a) TEM image of gold nanorods; b) electric field distribution at the extinction maximum of the longitudinal SPR band; and c) illustration of imprinted nanorod with siloxane copolymer preferentially grown at the ends.
a) TEM image of gold nanorods; b) electric field distribution at the extinction maximum of the longitudinal SPR band; and c) illustration of imprinted nanorod with siloxane copolymer preferentially grown at the ends.

Abstract:
The use of localized surface plasmon resonance (SPR) as a platform in biological sensing holds immense promise in delivering devices with superior sensitivity to those of competing technologies. Until now, a major drawback has been that the production of plasmonic biosensors required the use of natural antibodies, making the process expensive and time-consuming. An important step toward overcoming this problem has recently been made, with researchers at Washington University reporting a novel plasmonic biosensor with ‘artificial' antibodies.

Plasmonic biosensors with artificial antibodies

Germany | Posted on November 7th, 2012

The biosensor developed is based on very small changes in the SPR spectrum of gold nanorods upon selective binding of a target biomolecule (binding changes the refractive index surrounding the nanorod and thereby shifts the plasmon band). In order to achieve high selectivity, the researchers used the method of macromolecular imprinting to incorporate target species—as a proof-of-concept, several different proteins were used—into a polymer network in close vicinity (several nanometers) to the nanorod. Removal of the target leaves behind a cavity in the polymer, which acts as a ‘lock and key' receptor enabling selective binding of the analyte.

In order to attain maximal sensitivity, it is imperative that the polymer and the molecularly imprinted species are concentrated at the ends of the nanorod. This requirement owes to the fact that the electric field surrounding the nanorod is nonuniform, with the longitudinal resonance being stronger and more sensitive than the transverse (the electric field distribution of the longitudinal resonance is shown in figure panel (b)). This was achieved with the help of a surfactant (CTAB), which is known to adsorb preferentially at the sides of the nanorod. Specific chemicals employed to form a bridge between the nanorod and the polymer precursors were then able to interact preferentially with thiol groups on the ends of the nanorod due to the lower surfactant concentration. The result after polymerisation: a peanut shaped polymer-nanorod with the majority of the polymer and reversible template inclusions (i.e., artificial antibodies) at the ends where the SPR is most sensitivly affected by analyte binding (see figure panel (c)).

To demonstrate the viability of their biosensor in a real-world system, the researchers successfully detected recombinant human neutrophil gelatinase-associated lipocalin (NGAL), a urinary biomarker of acute kidney injury, with detection limits lower than those of conventional analytical techniques. Although emulating the performance of natural antibodies does remain a challenge, the authors suggest ways this could be achieved, meaning we are likely to hear a lot more about these novel biosensors in the near future.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Nanomedicine

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Nanotubes help healing hearts keep the beat: Rice University, Texas Children’s Hospital patch for defects enhances electrical connections between cells September 23rd, 2014

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Sensors

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Discoveries

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Announcements

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Iranian Scientists Determine Grain Size, Minimize Time of Nanocomposite Synthesis September 29th, 2014

Nanoparticles Used to Improve Quality of Bone Cement September 29th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Nanobiotechnology

Penn Team Studies Nanocrystals by Passing Them Through Tiny Pores September 26th, 2014

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

New NIH/DOE Grant for Life Science Studies at NSLS-II: Funding will support operation of three powerful experimental stations designed to reveal detailed structures of proteins, viruses, and more September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE