Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New study reveals challenge facing designers of future computer chips: Surprising findings could influence material choices in nanoelectronics

Abstract:
To build the computer chips of the future, designers will need to understand how an electrical charge behaves when it is confined to metal wires only a few atom-widths in diameter.

New study reveals challenge facing designers of future computer chips: Surprising findings could influence material choices in nanoelectronics

Montreal, Canada | Posted on November 6th, 2012

Now, a team of physicists at McGill University, in collaboration with researchers at General Motors R&D, have shown that electrical current may be drastically reduced when wires from two dissimilar metals meet. The surprisingly sharp reduction in current reveals a significant challenge that could shape material choices and device design in the emerging field of nanoelectronics.

The size of features in electronic circuits is shrinking every year, thanks to the aggressive miniaturization prescribed by Moore's Law, which postulated that the density of transistors on integrated circuits would double every 18 months or so. This steady progress makes it possible to carry around computers in our pockets, but poses serious challenges. As feature sizes dwindle to the level of atoms, the resistance to current no longer increases at a consistent rate as devices shrink; instead the resistance "jumps around," displaying the counterintuitive effects of quantum mechanics, says McGill Physics professor Peter Grütter.

"You could use the analogy of a water hose," Grütter explains. "If you keep the water pressure constant, less water comes out as you reduce the diameter of the hose. But if you were to shrink the hose to the size of a straw just two or three atoms in diameter, the outflow would no longer decline at a rate proportional to the hose cross-sectional area; it would vary in a quantized ('jumpy') way."

This "quantum weirdness" is exactly what the McGill and General Motors researchers observed, as described in a new paper appearing in Proceedings of the National Academy of Sciences. The researchers investigated an ultra-small contact between gold and tungsten, two metals currently used in combination in computer chips to connect different functional components of a device.

On the experimental side of the research, Prof. Grütter's lab used advanced microscopy techniques to image a tungsten probe and gold surface with atomic precision, and to bring them together mechanically in a precisely-controlled manner. The electrical current through the resulting contact was much lower than expected. Mechanical modeling of the atomic structure of this contact was done in collaboration with Yue Qi, a research scientist with the General Motors R&D Center in Warren, MI.

State-of-the-art electrical modeling by Jesse Maassen in professor Hong Guo's McGill Physics research group confirmed this result, showing that dissimilarities in electronic structure between the two metals leads to a fourfold decrease in current flow, even for a perfect interface. The researchers additionally found that crystal defects -- displacements of the normally perfect arrangement of atoms -- generated by bringing the two materials into mechanical contact was a further reason for the observed reduction of the current.

"The size of that drop is far greater than most experts would expect -- on the order of 10 times greater," notes Prof. Grütter.

The results point to a need for future research into ways to surmount this challenge, possibly through choice of materials or other processing techniques. "The first step toward finding a solution is being aware of the problem," Grütter notes. "This is the first time that it has been demonstrated that this is a major problem" for nanoelectronic systems."

Funding for this research was provided by the Natural Sciences and Engineering Research Council of Canada, le Fonds Québécois de la Recherche sur la Nature et les Technologies, and the Canadian Institute for Advanced Research.

####

For more information, please click here

Contacts:
Chris Chipello

514-398-4201


Secondary Contact Information
Contact: Peter Grutter
Organization: Department of Physics

Office Phone: 514-398-2567

Copyright © McGill University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Better battery imaging paves way for renewable energy future April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

New Biological Nano-Fertilizers Presented in Iran as Appropriate Replacements for Chemical Fertilizers April 18th, 2015

Chip Technology

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Graphenea embarks on a new era April 16th, 2015

Memory Technology

DWI scientists program the lifetime of self-assembled nanostructures April 9th, 2015

Computers that mimic the function of the brain: A new step forward in memristor technology could bring us closer to brain-like computing April 6th, 2015

Mind the gap: Nanoscale speed bump could regulate plasmons for high-speed data flow April 1st, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Nanoelectronics

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

Solution-grown nanowires make the best lasers April 14th, 2015

Discoveries

Ethylene Nanosorbent, a Novel Product to Decrease Agricultural Waste April 20th, 2015

Quantum model reveals surface structure of water: National Physical Laboratory, IBM and Edinburgh University have used a new quantum model to reveal the molecular structure of water's liquid surface April 20th, 2015

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project