Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Crystals for efficient refrigeration

The image shows a molecular dynamics simulation of lithium niobate under a time varying electric field, which changes the sign of the polarization. Red is niobium, green is oxygen, and lithium shows a range of colors for different time steps. The niobium and oxygen are shown only for one time step for clarity. The image shows a small part of the actual simulation.

Credit: Maimon Rose and Ronald Cohen Carnegie Institution
The image shows a molecular dynamics simulation of lithium niobate under a time varying electric field, which changes the sign of the polarization. Red is niobium, green is oxygen, and lithium shows a range of colors for different time steps. The niobium and oxygen are shown only for one time step for clarity. The image shows a small part of the actual simulation.

Credit: Maimon Rose and Ronald Cohen Carnegie Institution

Abstract:
Researchers at the Carnegie Institution have discovered a new efficient way to pump heat using crystals. The crystals can pump or extract heat, even on the nanoscale, so they could be used on computer chips to prevent overheating or even meltdown, which is currently a major limit to higher computer speeds. The research is published in the Physical Review Letters.

Crystals for efficient refrigeration

Washington, DC | Posted on November 5th, 2012

Ronald Cohen, staff scientist at Carnegie's Geophysical Laboratory and Maimon Rose, originally a high school intern now at the University of Chicago carried out the research. They performed simulations on ferroelectric crystals—materials that have electrical polarization in the absence of an electric field. The electrical polarization can be reversed by applying an external electrical field. The scientists found that the introduction of an electric field causes a giant temperature change in the material, dubbed the electrocaloric effect, far above a temperature to a so-called paraelectric state.

"The electrocaloric effect pumps heat through changing temperature by way of an applied electric field," explained Cohen. "The effect has been known since the 1930s, but has not been exploited because people were using materials with high transition temperatures. We found that the effect is larger if the ambient temperature is well above the transition temperature, so low transition temperature materials are preferred."

Ferroelectrics become paraelectric—that is, have no polarization under zero electric field above their transition temperature, which is the temperature at which a material changes its state from ferroelectric to paraelectric.

Rose and Cohen used atomic-scale molecular dynamics simulations, where they followed the behavior of atoms in the ferroelectric lithium niobate as functions of temperature and an electrical field. Maimon Rose started this work as a high school summer intern and is now in his second year as an undergraduate in biology at the University of Chicago. He worked on the project during breaks as an intern supported by EFree, DOE Energy Frontier Research Center at the Geophysical Laboratory. Rose remarked, "Lithium niobate had not been studied before like this. We were pretty surprised to see such a huge temperature change."

*The work was supported by the Center for Energy Frontier Research in Extreme Environments (EFree) at the Carnegie Institution's Geophysical Laboratory.

####

About Carnegie Institution
The Carnegie Institution (www.Carnegiescience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary sciences.

For more information, please click here

Contacts:
Ronald Cohen

202-478-8937

Copyright © Carnegie Institution

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Laboratories

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Physics

Solid nanoparticles can deform like a liquid: Unexpected finding shows tiny particles keep their internal crystal structure while flexing like droplets October 12th, 2014

Unconventional photoconduction in an atomically thin semiconductor: New mechanism of photoconduction could lead to next-generation excitonic devices October 9th, 2014

Nanoparticles Break the Symmetry of Light October 6th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Chip Technology

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE