Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Researchers create laser the size of a virus particle: Miniature laser operates at room temperature and defies the diffraction limit of light

Abstract:
A Northwestern University research team has found a way to manufacture single laser devices that are the size of a virus particle and that operate at room temperature. These plasmonic nanolasers could be readily integrated into silicon-based photonic devices, all-optical circuits and nanoscale biosensors.

Researchers create laser the size of a virus particle: Miniature laser operates at room temperature and defies the diffraction limit of light

Chicago, IL | Posted on November 5th, 2012

Reducing the size of photonic and electronic elements is critical for ultra-fast data processing and ultra-dense information storage. The miniaturization of a key, workhorse instrument -- the laser -- is no exception.

The results are published in the journal Nano Letters.

"Coherent light sources at the nanometer scale are important not only for exploring phenomena in small dimensions but also for realizing optical devices with sizes that can beat the diffraction limit of light," said Teri Odom, a nanotechnology expert who led the research.

Odom is the Board of Lady Managers of the Columbian Exposition Professor of Chemistry in the Weinberg College of Arts and Sciences and a professor of materials science and engineering in the McCormick School of Engineering and Applied Science.

"The reason we can fabricate nano-lasers with sizes smaller than that allowed by diffraction is because we made the lasing cavity out of metal nanoparticle dimers -- structures with a 3-D 'bowtie' shape," Odom said.

These metal nanostructures support localized surface plasmons -- collective oscillations of electrons -- that have no fundamental size limits when it comes to confining light.

The use of the bowtie geometry has two significant benefits over previous work on plasmon lasers: (1) the bowtie structure provides a well-defined, electromagnetic hot spot in a nano-sized volume because of an antenna effect, and (2) the individual structure has only minimal metal "losses" because of its discrete geometry.

"Surprisingly, we also found that when arranged in an array, the 3-D bowtie resonators could emit light at specific angles according to the lattice parameters," Odom said.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The Nano Letters paper, titled "Plasmonic Bowtie Nanolaser Arrays," is available at:

Related News Press

News and information

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Sensors

Optical resonance-based biosensors designed for medical applications April 18th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

Discoveries

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Announcements

How to maximize the superconducting critical temperature in a molecular superconductor: International team led by Tohoku University opens new route for discovering high Tc superconductors April 19th, 2015

Iranian Foodstuff, Agricultural Industries Welcome Nanotechnology Packaging Bags April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Dais Analytic Corporation Appoints Eliza Wang to Board of Directors: Company's Newest Director Brings Expertise in Commercial and Legal Matters Both in the United States and China; Joins on the Heels of Successful Business Development Trade Mission to China April 18th, 2015

Tools

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Combined effort for structural determination April 15th, 2015

Deben reports on the research of Dr Sunita Ho from UCSF using a CCT500 tensile stage to study the behaviour of dental materials April 14th, 2015

Photonics/Optics/Lasers

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Light in a spin: Researchers demonstrate angular accelerating light April 15th, 2015

Graphene pushes the speed limit of light-to-electricity conversion: Researchers from ICFO, MIT and UC Riverside have been able to develop a graphene-based photodetector capable of converting absorbed light into an electrical voltage at ultrafast timescales April 14th, 2015

Scientists create invisible objects without metamaterial cloaking April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE