Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > 'Ordered' catalyst boosts fuel cell output at lower cost

Provided
Electron microscope image of a platinum-cobalt alloy nanoparticle, showing the arrangement of the metal atoms into an ordered lattice. A smaller particle overlaps the large one at the bottom. Yellow arrows indicate the three layers of platinum atoms on the surface.
Provided

Electron microscope image of a platinum-cobalt alloy nanoparticle, showing the arrangement of the metal atoms into an ordered lattice. A smaller particle overlaps the large one at the bottom. Yellow arrows indicate the three layers of platinum atoms on the surface.

Abstract:
Fuel cells, which convert fuel directly into electricity without burning it, promise a less polluted future where cars run on pure hydrogen and exhaust nothing but water vapor. But the catalysts that make them work are still "sluggish" and worse, expensive.

'Ordered' catalyst boosts fuel cell output at lower cost

Ithaca, NY | Posted on November 1st, 2012

By Bill Steele

A research team at the Cornell Energy Materials Center has taken an important step forward with a chemical process that creates platinum-cobalt nanoparticles with a platinum enriched shell that show improved catalytic activity. "This could be a real significant improvement. It enhances the catalysis and cuts down the cost by a factor of five," said Héctor Abruña, the E.M. Chamot Professor of Chemistry and Chemical Biology, senior author of a paper describing the work in the Oct. 28 issue of the journal Nature Materials. Co-authors include Francis DiSalvo, the John Newman Professor of Chemistry and Chemical Biology, and David Muller, professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science.

In a hydrogen fuel cell, a catalyst at one electrode breaks hydrogen atoms into their component protons and electrons. The electrons travel through an external circuit to create an electric current to the other electrode, where a second catalyst combines the incoming electrons, free protons and oxygen to form water. In current commercial fuel cells, that catalyst is pure platinum, which is scarce and expensive. Researchers have tried substituting platinum alloys with varying degrees of success. Previously, the Cornell research team created nanoparticles of a palladium-cobalt alloy coated with a thin layer of platinum that worked like pure platinum at lower cost. Forming the catalyst as nanoparticles -- typically about 5 nanometers in diameter and distributed on a carbon support -- provides more surface area to react with the fuel.

Computer simulations of the catalytic reaction predicted that there should be an increase in catalytic activity if the platinum atoms are pushed a bit together or "strained," as Abruña describes it. Deli Wang, a post-doctoral researcher in Abruña's group, devised a new chemical process to manufacture nanoparticles of a platinum-cobalt alloy that included an annealing (heating) step, where the randomly distributed atoms in the alloy form an orderly crystal structure. Rather than just being jumbled together, the metal atoms arrange themselves in an orderly lattice. Platinum atoms layered onto these particles line up with the lattice and are pushed closer together than they would be in pure platinum, with the resulting "strain" enhancing the catalytic activity. Huolin Xin, a graduate student in Muller's group, used a scanning tunneling electron microscope to confirm the structure.

In preliminary tests the new nanoparticles to showed about three and a half times higher catalytic activity (measured by current flow) than similar particles with a disordered core, and more than 12 times more than pure platinum. The new catalysts also are more durable. Fuel cell catalysts lose their effectiveness as platinum atoms are oxidized away or as nanoparticles clump together, deceasing the surface area they can offer to react with fuel. After 5,000 on-off cycles of a test cell, catalytic activity of the ordered nanoparticles remained steady, while that of similar cobalt-platinum nanoparticles with a disordered core rapidly fell off. The ordered structure is more stable, Abruña said. The platinum skin may be bonded more strongly to the ordered core than to the disordered alloy, so it would be less likely to fuse with the platinum on other nanoparticles to cause clumping. "We have not gone beyond 5,000 cycles but the results up to that point look very, very good," he said.

The Energy Materials Center at Cornell is an Energy Frontier Research Center funded by the U.S. Department of Energy.

####

For more information, please click here

Contacts:
Media Contact:
John Carberry
(607) 255-5553

Cornell Chronicle:
Bill Steele
(607) 255-7164

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Chemistry

Syracuse University chemists add color to chemical reactions: Chemists in the College of Arts and Sciences have come up with an innovative new way to visualize and monitor chemical reactions in real time May 19th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Physicists measure van der Waals forces of individual atoms for the first time May 14th, 2016

Atomic force microscope reveals molecular ghosts: Mapping molecules with atomic precision expands toolbox for designing new catalytic reactions May 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Discoveries

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Announcements

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Energy

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Automotive/Transportation

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Fuel Cells

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Saving sunshine for a rainy day: New catalyst offers efficient storage of green energy: Team led by U of T Engineering designs world's most efficient catalyst for storing energy as hydrogen by splitting water molecules March 28th, 2016

Carbon leads the way in clean energy: Groundbreaking research at Griffith University is leading the way in clean energy, with the use of carbon as a way to deliver energy using hydrogen March 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic