Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Effective Elimination of Industrial Pollutants with New Nanosensors

Abstract:
Researchers from University of Mohaghegh Ardebili in Iran and University of Bath obtained the technology to produce a nanosensor in order to measure environmental pollutants called dihydroxybenzene.

Effective Elimination of Industrial Pollutants with New Nanosensors

Tehran, Iran | Posted on November 1st, 2012

The achievement was made by studying the voltammetry of dihydroxybenzene isomers on the surface of glass carbon electrode modified with carbon nanoparticle - chitosan composite film with high surface area.

In addition to its reasonable price, the presented electrode is able to adsorb huge amounts of impurities in dihydroxybenzene.

Catechol (1,2-dihydroxybenzene), resorcinol (1,3-dihydroxybenzene), and hydroquinone (1,4-dihydroxybenzene) are the three isomers of dihydroxybenzene, which are used in cosmetics, pesticides, scent and flavor essences, drugs, antioxidants and chemicals for photography and paint.

"Carbon structures, including glass carbon, carbon nanotube, and its other forms are important in electro-analysis. Carbon nanomaterials play an important role in electrochemical processes due to their high surface area and high active bonds. Electrodes modified with carbon nanoparticles have advantages such as catalysis of electrochemical reactions by increasing the rate of ion exchange and increasing the mass transfer due to high specific area. These properties of carbon nanoparticles are used in order to modify sensor properties," Dr. Mandana Amiri, a member of the Scientific Board of Mohaghegh Ardebili University, stated about the research.

In this research, real samples of water such as water of a local river and the wastewater of a rubber factory were analyzed in the presence of the electrode. Results showed 96-108% recycling at various concentrations.

Results of the research have been published on 20 February 2012 in Sensors and Actuators B: Chemical, vol. 162, issue 1, pp. 194-200.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Sensors

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Discoveries

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Announcements

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Environment

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell August 28th, 2017

A more complete picture of the nano world August 24th, 2017

Industrial

Researchers printed graphene-like materials with inkjet August 17th, 2017

Nanocrystalline LEDs: Red, green, yellow, blue ... August 7th, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

3-D-printed jars in ball-milling experiments June 29th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project