Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Stanford scientists build the first all-carbon solar cell

This shows the new all-carbon solar cell consists of a photoactive layer, which absorbs sunlight, sandwiched between two electrodes.

Credit: Mark Shwartz / Stanford University
This shows the new all-carbon solar cell consists of a photoactive layer, which absorbs sunlight, sandwiched between two electrodes.

Credit: Mark Shwartz / Stanford University

Abstract:
Stanford University scientists have built the first solar cell made entirely of carbon, a promising alternative to the expensive materials used in photovoltaic devices today.

Stanford scientists build the first all-carbon solar cell

Stanford, CA | Posted on October 31st, 2012

The results are published in the Oct. 31 online edition of the journal ACS Nano.

"Carbon has the potential to deliver high performance at a low cost," said study senior author Zhenan Bao, a professor of chemical engineering at Stanford. "To the best of our knowledge, this is the first demonstration of a working solar cell that has all of the components made of carbon. This study builds on previous work done in our lab."

Unlike rigid silicon solar panels that adorn many rooftops, Stanford's thin film prototype is made of carbon materials that can be coated from solution. "Perhaps in the future we can look at alternative markets where flexible carbon solar cells are coated on the surface of buildings, on windows or on cars to generate electricity," Bao said.

The coating technique also has the potential to reduce manufacturing costs, said Stanford graduate student Michael Vosgueritchian, co-lead author of the study with postdoctoral researcher Marc Ramuz.

"Processing silicon-based solar cells requires a lot of steps," Vosgueritchian explained. "But our entire device can be built using simple coating methods that don't require expensive tools and machines."

Carbon nanomaterials

The Bao group's experimental solar cell consists of a photoactive layer, which absorbs sunlight, sandwiched between two electrodes. In a typical thin film solar cell, the electrodes are made of conductive metals and indium tin oxide (ITO). "Materials like indium are scarce and becoming more expensive as the demand for solar cells, touchscreen panels and other electronic devices grows," Bao said. "Carbon, on the other hand, is low cost and Earth-abundant."

For the study, Bao and her colleagues replaced the silver and ITO used in conventional electrodes with graphene - sheets of carbon that are one atom thick -and single-walled carbon nanotubes that are 10,000 times narrower than a human hair. "Carbon nanotubes have extraordinary electrical conductivity and light-absorption properties," Bao said.

For the active layer, the scientists used material made of carbon nanotubes and "buckyballs" - soccer ball-shaped carbon molecules just one nanometer in diameter. The research team recently filed a patent for the entire device.

"Every component in our solar cell, from top to bottom, is made of carbon materials," Vosgueritchian said. "Other groups have reported making all-carbon solar cells, but they were referring to just the active layer in the middle, not the electrodes."

One drawback of the all-carbon prototype is that it primarily absorbs near-infrared wavelengths of light, contributing to a laboratory efficiency of less than 1 percent - much lower than commercially available solar cells. "We clearly have a long way to go on efficiency," Bao said. "But with better materials and better processing techniques, we expect that the efficiency will go up quite dramatically."

Improving efficiency

The Stanford team is looking at a variety of ways to improve efficiency. "Roughness can short-circuit the device and make it hard to collect the current," Bao said. "We have to figure out how to make each layer very smooth by stacking the nanomaterials really well."

The researchers are also experimenting with carbon nanomaterials that can absorb more light in a broader range of wavelengths, including the visible spectrum.

"Materials made of carbon are very robust," Bao said. "They remain stable in air temperatures of nearly 1,100 degrees Fahrenheit."

The ability of carbon solar cells to out-perform conventional devices under extreme conditions could overcome the need for greater efficiency, according to Vosgueritchian. "We believe that all-carbon solar cells could be used in extreme environments, such as at high temperatures or at high physical stress," he said. "But obviously we want the highest efficiency possible and are working on ways to improve our device."

"Photovoltaics will definitely be a very important source of power that we will tap into in the future," Bao said. "We have a lot of available sunlight. We've got to figure out some way to use this natural resource that is given to us."


Other authors of the study are Peng Wei of Stanford and Chenggong Wang and Yongli Gao of the University of Rochester Department of Physics and Astronomy. The research was funded by the Global Climate and Energy Project at Stanford and the Air Force Office for Scientific Research.

This article was written by Mark Shwartz of the Precourt Institute for Energy at Stanford University.

####

For more information, please click here

Contacts:
Mark Shwartz

650-723-9296

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Graphene

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

Angstron Materials Appoints VP for Business Development And Engineering June 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Nanotubes/Buckyballs/Fullerenes

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Discoveries

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Announcements

Superconductor could be realized in a broken Lorenz invariant theory July 7th, 2015

New technique enables magnetic patterns to be mapped in 3-D July 7th, 2015

Crystal structure and magnetism -- new insight into the fundamentals of solid state physics: HZB team decodes relationship between magnetic interactions and the distortions in crystal structure within a geometrically 'frustrated' spinel system July 7th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Military

Surfing a wake of light: Researchers observe and control light wakes for the first time July 6th, 2015

Graphene flexes its electronic muscles: Rice-led researchers calculate electrical properties of carbon cones, other shapes June 30th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Solar/Photovoltaic

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Toward tiny, solar-powered sensors: New ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project