Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Stanford scientists build the first all-carbon solar cell

This shows the new all-carbon solar cell consists of a photoactive layer, which absorbs sunlight, sandwiched between two electrodes.

Credit: Mark Shwartz / Stanford University
This shows the new all-carbon solar cell consists of a photoactive layer, which absorbs sunlight, sandwiched between two electrodes.

Credit: Mark Shwartz / Stanford University

Abstract:
Stanford University scientists have built the first solar cell made entirely of carbon, a promising alternative to the expensive materials used in photovoltaic devices today.

Stanford scientists build the first all-carbon solar cell

Stanford, CA | Posted on October 31st, 2012

The results are published in the Oct. 31 online edition of the journal ACS Nano.

"Carbon has the potential to deliver high performance at a low cost," said study senior author Zhenan Bao, a professor of chemical engineering at Stanford. "To the best of our knowledge, this is the first demonstration of a working solar cell that has all of the components made of carbon. This study builds on previous work done in our lab."

Unlike rigid silicon solar panels that adorn many rooftops, Stanford's thin film prototype is made of carbon materials that can be coated from solution. "Perhaps in the future we can look at alternative markets where flexible carbon solar cells are coated on the surface of buildings, on windows or on cars to generate electricity," Bao said.

The coating technique also has the potential to reduce manufacturing costs, said Stanford graduate student Michael Vosgueritchian, co-lead author of the study with postdoctoral researcher Marc Ramuz.

"Processing silicon-based solar cells requires a lot of steps," Vosgueritchian explained. "But our entire device can be built using simple coating methods that don't require expensive tools and machines."

Carbon nanomaterials

The Bao group's experimental solar cell consists of a photoactive layer, which absorbs sunlight, sandwiched between two electrodes. In a typical thin film solar cell, the electrodes are made of conductive metals and indium tin oxide (ITO). "Materials like indium are scarce and becoming more expensive as the demand for solar cells, touchscreen panels and other electronic devices grows," Bao said. "Carbon, on the other hand, is low cost and Earth-abundant."

For the study, Bao and her colleagues replaced the silver and ITO used in conventional electrodes with graphene - sheets of carbon that are one atom thick -and single-walled carbon nanotubes that are 10,000 times narrower than a human hair. "Carbon nanotubes have extraordinary electrical conductivity and light-absorption properties," Bao said.

For the active layer, the scientists used material made of carbon nanotubes and "buckyballs" - soccer ball-shaped carbon molecules just one nanometer in diameter. The research team recently filed a patent for the entire device.

"Every component in our solar cell, from top to bottom, is made of carbon materials," Vosgueritchian said. "Other groups have reported making all-carbon solar cells, but they were referring to just the active layer in the middle, not the electrodes."

One drawback of the all-carbon prototype is that it primarily absorbs near-infrared wavelengths of light, contributing to a laboratory efficiency of less than 1 percent - much lower than commercially available solar cells. "We clearly have a long way to go on efficiency," Bao said. "But with better materials and better processing techniques, we expect that the efficiency will go up quite dramatically."

Improving efficiency

The Stanford team is looking at a variety of ways to improve efficiency. "Roughness can short-circuit the device and make it hard to collect the current," Bao said. "We have to figure out how to make each layer very smooth by stacking the nanomaterials really well."

The researchers are also experimenting with carbon nanomaterials that can absorb more light in a broader range of wavelengths, including the visible spectrum.

"Materials made of carbon are very robust," Bao said. "They remain stable in air temperatures of nearly 1,100 degrees Fahrenheit."

The ability of carbon solar cells to out-perform conventional devices under extreme conditions could overcome the need for greater efficiency, according to Vosgueritchian. "We believe that all-carbon solar cells could be used in extreme environments, such as at high temperatures or at high physical stress," he said. "But obviously we want the highest efficiency possible and are working on ways to improve our device."

"Photovoltaics will definitely be a very important source of power that we will tap into in the future," Bao said. "We have a lot of available sunlight. We've got to figure out some way to use this natural resource that is given to us."


Other authors of the study are Peng Wei of Stanford and Chenggong Wang and Yongli Gao of the University of Rochester Department of Physics and Astronomy. The research was funded by the Global Climate and Energy Project at Stanford and the Air Force Office for Scientific Research.

This article was written by Mark Shwartz of the Precourt Institute for Energy at Stanford University.

####

For more information, please click here

Contacts:
Mark Shwartz

650-723-9296

Copyright © Stanford University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Graphene/ Graphite

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Discoveries

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Unraveling the crystal structure of a -70 Celsius superconductor, a world first: Significant advancement in the realization of room-temperature superconductors August 25th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Military

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Lab team spins ginger into nanoparticles to heal inflammatory bowel disease August 19th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic