Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NIST research highlights promise of AFM-IR for quantitative nanoscale chemical analysis

Schematic to show the operation of AFM-IR
Schematic to show the operation of AFM-IR

Abstract:
Anasys Instruments announces a new paper authored by Dr Andrea Centrone and his colleagues at NIST published recently in Small*, a leading publication which focuses on the nano and micro worlds.

NIST research highlights promise of AFM-IR for quantitative nanoscale chemical analysis

Santa Barbara, CA | Posted on October 30th, 2012

Dr Centrone's team reported on experiments that carefully studied the AFM-IR signal strength versus sample thickness. The experiments showed that the AFM-IR signal increases linearly with thickness for samples up to 1µm thick. This observed linearity may pave the way for quantitative chemical analysis at the nanoscale.

AFM-IR has recently attracted great interest in that it enables chemical identification and imaging with nanoscale resolution. In this paper, NIST reports on electron beam nanopatterned polymer samples which were fabricated directly on zinc selenide prisms and used to experimentally evaluate the AFM-IR signal lateral resolution, sensitivity and linearity. The authors have shown that the AFM-IR lateral resolution for chemical imaging is comparable to the lateral resolution obtained in the AFM topography. Spectra and chemical maps were produced from samples as thin as 40 nm. The observations also provide experimental confirmation of theoretical predictions on AFM-IR previously developed by Prof Alexandre Dazzi of Univ of Paris-Orsay who is also the inventor of the technique.

The patented AFM-IR technique is available commercially as the nanoIR™ platform from Anasys Instruments, Santa Barbara, CA. In AFM-IR, a rapidly pulsed infrared (IR) laser is directed on upon a thin sample which absorbs the IR light and undergoes rapid thermomechanical expansion. An AFM tip in contact with the sample resonates in response to the expansion, and this resonance is measured by the AFM. "We are excited by this through work by Dr. Centrone and his colleagues," said Craig Prater, Chief Technology Officer of Anasys Instruments. "We applaud NIST's research and involvement in advancing nanoscale characterization of materials using AFM-based spectroscopy."

For information about the AFM-IR products from Anasys Instruments, please visit www.anasysinstruments.com.

*Chemical imaging beyond the diffraction limit: experimental validation of the PTIR technique, DOI: 10.1001/smll.201200788. For a high resolution image of either of the above, please right click to download and save or contact Jezz Leckenby at Talking Science.

####

About Anasys Instruments
Anasys Instruments is dedicated to delivering innovative products and solutions that analyze samples with spatially varying physical and chemical properties at the micro and nanoscale. Anasys Instruments introduced the nanoTA in 2006 which pioneered the field of nanoscale thermal property measurement. In 2010, Anasys Instruments proudly introduced the award-winning breakthrough nanoIR™ Platform which pioneered the field of nanoscale IR measurement.

For more information, please click here

Contacts:
Anasys contact:
Roshan Shetty
Anasys Instruments Corporation
121 Gray Avenue, Suite 100
Santa Barbara
CA 93101 USA
Tel: +1 (805) 730-3310


Media contact:
Jezz Leckenby
Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA, UK
Tel +44 (0) 1799 521881
Mob +44 (0) 7843 012997
www.talking-science.com

Copyright © Anasys Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Laboratories

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Scientists Set Record Resolution for Drawing at the One-Nanometer Length Scale: An electron microscope-based lithography system for patterning materials at sizes as small as a single nanometer could be used to create and study materials with new properties May 1st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Tools

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project