Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Low-resistance connections facilitate multi-walled carbon nanotubes for interconnects: Hybrid electronics

Georgia Tech Professor Andrei Fedorov demonstrates the electron beam induced deposition (EBID) system used to create graphitic nanojoints to multi-walled carbon nanotubes.

Credit: Georgia Tech Photo: Gary Meek
Georgia Tech Professor Andrei Fedorov demonstrates the electron beam induced deposition (EBID) system used to create graphitic nanojoints to multi-walled carbon nanotubes.

Credit: Georgia Tech Photo: Gary Meek

Abstract:
Using a new method for precisely controlling the deposition of carbon, researchers have demonstrated a technique for connecting multi-walled carbon nanotubes to the metallic pads of integrated circuits without the high interface resistance produced by traditional fabrication techniques.

Low-resistance connections facilitate multi-walled carbon nanotubes for interconnects: Hybrid electronics

Atlanta, GA | Posted on October 30th, 2012

Based on electron beam-induced deposition (EBID), the work is believed to be the first to connect multiple shells of a multi-walled carbon nanotube to metal terminals on a semiconducting substrate, which is relevant to integrated circuit fabrication. Using this three-dimensional fabrication technique, researchers at the Georgia Institute of Technology developed graphitic nanojoints on both ends of the multi-walled carbon nanotubes, which yielded a 10-fold decrease in resistivity in its connection to metal junctions.

The technique could facilitate the integration of carbon nanotubes as interconnects in next-generation integrated circuits that use both silicon and carbon components. The research was supported by the Semiconductor Research Corporation, and in its early stages, by the National Science Foundation. The work was reported online October 4, 2012, by the journal IEEE Transactions on Nanotechnology.

"For the first time, we have established connections to multiple shells of carbon nanotubes with a technique that is amenable to integration with conventional integrated circuit microfabrication processes," said Andrei Fedorov, a professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech. "Connecting to multiple shells allows us to dramatically reduce the resistance and move to the next level of device performance."

In developing the new technique, the researchers relied on modeling to guide their process parameters. To make it scalable for manufacturing, they also worked toward technologies for isolating and aligning individual carbon nanotubes between the metal terminals on a silicon substrate, and for examining the properties of the resulting structures. The researchers believe the technique could also be used to connect multi-layered graphene to metal contacts, though their published research has so far focused on carbon nanotubes.

The low-temperature EBID process takes place in a scanning electron microscope (SEM) system modified for material deposition. The SEM's vacuum chamber is altered to introduce precursors of the materials that researchers would like to deposit. The electron gun normally used for imaging of nanostructures is instead used to generate low energy secondary electrons when the high energy primary electrons impinge on the substrate at carefully chosen locations. When the secondary electrons interact with hydrocarbon precursor molecules introduced into the SEM chamber, carbon is deposited in desired locations.

Unique to the EBID process, the deposited carbon makes a strong, chemically-bonded connection to the ends of the carbon nanotubes, unlike the weakly-coupled physical interface made in traditional techniques based on metal evaporation. Prior to deposition, the ends of the nanotubes are opened using an etching process, so the deposited carbon grows into the open end of the nanotube to electronically connect multiple shells. Thermal annealing of the carbon after deposition converts it to a crystalline graphitic form that significantly improves electrical conductivity.

"Atom-by-atom, we can build the connection where the electron beam strikes right near the open end of the carbon nanotubes," Fedorov explained. "The highest rate of deposition occurs where the concentration of precursor is high and there are a lot of secondary electrons. This provides a nanoscale sculpturing tool with three-dimensional control for connecting the open ends of carbon nanotubes on any desired substrate."

Multi-walled carbon nanotubes offer the promise of higher information delivery throughput for certain interconnects used in electronic devices. Researchers have envisioned a future generation of hybrid devices based on traditional integrated circuits but using interconnects based on carbon nanotubes.

Until now, however, resistance at the connections between the carbon structures and conventional silicon electronics has been too high to make the devices practical.

"The big challenge in this field is to make a connection not just to a single shell of a carbon nanotube," said Fedorov. "If only the outer wall of a carbon nanotube is connected, you really don't gain much because most of the transmission channel is under-utilized or not utilized at all."

The technique developed by Fedorov and his collaborators produces record low resistivity at the connection between the carbon nanotube and the metal pad. The researchers have measured resistance as low as approximately 100 Ohms - a factor of ten lower than the best that had been measured with other connection techniques.

"This technique gives us many new opportunities to go forward with integrating these carbon nanostructures into conventional devices," he said. "Because it is carbon, this interface has an advantage because its properties are similar to those of the carbon nanotubes to which they are providing a connection."

The researchers don't know exactly how many of the carbon nanotube shells are connected, but based on resistance measurements, they believe at least 10 of the approximately 30 conducting shells are contributing to electrical conduction.

However, handling carbon nanotubes poses a significant challenge to their use as interconnects. When formed through the electric arc technique, for example, carbon nanotubes are produced as a tangle of structures with varying lengths and properties, some with mechanical defects. Techniques have been developed to separate out single nanotubes, and to open their ends.

Fedorov and his collaborators - current and former graduate students Songkil Kim, Dhaval Kulkarni, Konrad Rykaczewski and Mathias Henry, along with Georgia Tech professor Vladimir Tsukruk - developed a method for aligning the multi-walled nanotubes across electronic contacts using focused electrical fields in combination with a substrate template created through electron beam lithography. The process has a significantly improved yield of properly aligned carbon nanotubes, with a potential for scalability over a large chip area.

Once the nanotubes are placed into their positions, the carbon is deposited using the EBID process, followed by graphitization. The phase transformation in the carbon interface is monitored using Raman spectroscopy to ensure that the material is transformed into its optimal nanocrystalline graphite state.

"Only by making advances in each of these areas can we achieve this technological advance, which is an enabling technology for nanoelectronics based on carbon materials," he said. "This is really a critical step for making many different kinds of devices using carbon nanotubes or graphene."

Before the new technique can be used on a large scale, researchers will have to improve their technique for aligning carbon nanotubes and develop EBID systems able to deposit connectors on multiple devices simultaneously. Advances in parallel electron beam systems may provide a way to mass-produce the connections, Fedorov said.

"A major amount of work remains to be done in this area, but we believe this is possible if industry becomes interested," he noted. "There are applications where integrating carbon nanotubes into circuits could be very attractive."

CITATION: Songkil Kim, et.al, "Fabrication of an Ultra-Low-Resistance Ohmic Contact to MWCNT-Metal Interconnect Using Graphitic Carbon by Electron Beam Induced Deposition (EBID)", IEEE Transactions on Nanotechnology (2012). dx.doi.org/10.1109/TNANO.2012.2220377

This research has been supported by the Semiconductor Research Corporation (SRC) under GRC grant 2008OJ1864.1281 and in part by the National Science Foundation (NSF) under grant DMI 0403671. The content of this article is solely the responsibility of the authors and does not necessarily represent the official views of the NSF or the SRC.

####

For more information, please click here

Contacts:
John Toon

404-894-6986

Abby Vogel Robinson
404-385-3364

Copyright © Georgia Institute of Technology Research News

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article - "Fabrication of an Ultra-Low-Resistance Ohmic Contact to MWCNT-Metal Interconnect Using Graphitic Carbon by Electron Beam Induced Deposition (EBID)."

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Detection of bacteria and viruses with fluorescent nanotubes July 21st, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project