Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles provide reinforcement for invisible brackets in orthodontics

Bracket
Bracket

Abstract:
Brackets made from clear plastic polymer used in dental correction orthodontics have produced very good results in recent years, especially in relation to the improved esthetics when compared to metal brackets, but they do present certain problems of wear and tear within the mouth. "We were estimating the friction between teeth and the brackets, and it occurred to us that nanotechnology might be of use to help us resolve this issue," remarked Juan Baselga, head of the UC3M Polymers and Composite Group. The solution that they came up with is to use very hard alumina nanoparticles and spread them evenly in the polysulfone, the polymer mould that Euroortodoncia uses in the industrial production of the brackets.

Nanoparticles provide reinforcement for invisible brackets in orthodontics

Madrid, Spain | Posted on October 30th, 2012

This new process, patented by the company and the UC3M researchers, has produced a new material which increases mechanical as well as friction resistance, thereby maintaining the brackets' transparency. "We have been able to develop a more rigid material with this technology which has a clearly improved friction resistance, thus helping to withstand the wear and tear produced by the teeth or by chewing, Professor Baselga explained. In addition, it is biocompatible, which is essential for something that is going to be used in the mouth, and complies with European requirements for products which are in contact with food.

These new types of materials- nano-reinforced plastics- have applications in diverse areas of industry, according to the researchers. In particular, polysulfone is of interest in the bio-health field because of its bio-compatibility in the development of medical- surgical equipment, where it is of the essence to improve rigidity and friction resistance. Furthermore, it has potential applications in the auto industry and in the area of safety such as, for example, the development of a new visor for firefighters.

This innovation allows nanoparticles to be incorporated and evenly dispersed in a polymer mould in a very low proportion. After this process that is based on green chemical techniques is carried out by UC3M researchers, the particles, which are now dispersed in the polymer through micro-extrusion and micro-injection techniques, are then mixed to produce the final piece in the CEOSA-Euroortodoncia . " We measure out the plastic since the minimum that a normal machine can inject is 15 grams, whereas our pieces weigh .06 grams…it would be akin to injecting insulin with a horse syringe", explained the company director, Alberto Cervera. "And with the technology we are using, micro-extrusion and the micro-injection, we are capable of controlling these minuscule quantities of material with the utmost precision," he added.

The relationship between UC3M and CEOSA/Euroortodoncia takes advantage of the synergy between the public and private sector. "We are a small to medium-sized enterprise and we get support from the University to produce a first rate product, which is then advantageous in the agreements which we have had for a decade in the form of end-of-degree-projects, doctorial theses and joint research programs within the European Union and in the Madrid Autonomous Community, for example," Alberto Cervera ellaborated. "We learn a lot from this collaboration," continued Juan Baselga, "because this company presented us with real problems that they face in their industrial area and they open up their laboratories to our needs."

Patents and innovated application are clear examples of the knowledge and technology transfer that UC3M promotes through the Science Park. One hundred and twenty-five research groups and various laboratories all work so that this innovation is possible. All of this, together with their own technological portfolio, shows the capacity of the University for collaboration with business, industry and institutions.

####

About Universidad Carlos III de Madrid
The objetive of Scientific Information Bureau of Carlos III University of Madrid is enhancing the transfer of knowledge to the business sector, as well as fomenting public awareness of the results of its research.

The Carlos III University of Madrid is in the Community of Madrid, 15 minutes to the city centre from its nearest campus. The three campuses are located in Getafe and Leganés, to the south of the capital, and in Colmenarejo, to the north-east.

For more information, please click here

Contacts:
Ana María Herrera
+34916246231

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Further information regarding UC3M capacity for innovation at:

Related News Press

News and information

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Discoveries

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Materials/Metamaterials

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Nano-saturn: Supramolecular complex formation: Anthracene macrocycle and C60 fullerene June 8th, 2018

Announcements

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Patents/IP/Tech Transfer/Licensing

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Leti Silicon Photonics Design Kit Available in Synopsis OptoDesigner Suite: Kit Contains Design Rules and Building Blocks for Multi-Project Wafers And Custom Runs on Leti’s Si310 Platform April 5th, 2018

NTU scientists create customizable, fabric-like power source for wearable electronics January 30th, 2018

Dental

Detecting the birth and death of a phonon June 7th, 2018

MEET THE WOMAN BEHIND THE NANOTECHNOLOGY THAT REVOLUTIONIZED DENTAL CARE May 1st, 2018

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

New technology can detect tiny ovarian tumors: 'Synthetic biomarkers' could be used to diagnose ovarian cancer months earlier than now possible April 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project