Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Totally tubular films show promise for touchscreens: Rice University lab creates simple method for flexible, conductive carbon nanotube sheets

A thin film of pure carbon nanotubes produced at Rice Universityshows promise as a component of flexible, transparent touchscreens. (Credit: Pasquali Lab/Rice University)
A thin film of pure carbon nanotubes produced at Rice Universityshows promise as a component of flexible, transparent touchscreens.

(Credit: Pasquali Lab/Rice University)

Abstract:
A Rice University team has hit upon a method to produce nearly transparent films of electrically conductive carbon nanotubes, a goal sought by researchers around the world.

Totally tubular films show promise for touchscreens: Rice University lab creates simple method for flexible, conductive carbon nanotube sheets

Houston, TX | Posted on October 29th, 2012

The lab of Rice researcher Matteo Pasquali found that slides dipped into a solution of pure nanotubes in chlorosulfonic acid (CSA) left them with an even coat of nanotubes that, after further processing, had none of the disadvantages seen with other methods.

The films may be suitable for flexible electronic displays and touchscreens, according to the paper published this month in the American Chemical Society journal ACS Nano.

"I think this could be the way that high-performance transparent electrodes are made in the future," said Pasquali, a professor of chemical and biomolecular engineering and of chemistry. "The solution is straightforward. It's a very simple process."

The method is scalable to high-throughput processes like slot, slide and roll coating used by industry, Pasquali said.

A frustrating characteristic of nanotubes, particularly long ones, is that they attract each other in common solvents, making it a challenge to disperse them. Long nanotubes are believed to be the key to high-performance films.

Researchers have tried other ways to keep them from aggregating, Pasquali said. Functionalizing nanotubes - dressing them with chemicals - can make them less attractive to each other, but it degrades their desirable electrical properties. Combinations of surfactants and sonication have also been tried, but the nanotubes breakduring sonication, and the surfactant leaves a residue that cannot be washed away, he said.

These methods, combined with various means of mechanical coating, have been used to create nanotube films, but none with the level of quality achieved by the Pasquali lab. TheRice films, which are made of nanotubes thousands of times longer than they are wide, remain electrically stable after more than three months, said graduate student and lead author Francesca Mirri.

The nanotubes, literally, had to pass an acid test. "(CSA) is the acid we typically use in our lab, so the first thing we say when we get a new type of carbon nanotubes is, 'OK, let's put it in acid and see what happens,'" Mirri said. In previous research, Pasquali's lab had determined that CSA can dissolve high-quality nanotubes because the acid induces repulsive forces between the tubes that counterbalance the van der Waals force that draws them together.

Mirri and her colleagues produced films by combining single- or double-walled carbon nanotubes with CSA in various concentrations. They dipped glass slides into the nanotube solutions with a motorized arm to ensure even coating as the slides were steadily withdrawn.

They used chloroform to coagulate the acid and dry the slides, followed by a wash of diethyl ether. The researchers were surprised to find the chloroform did not disrupt the thin liquid layer. The result was a film several nanometers thick that provided the best tradeoff between transparency and sheet resistance, a measure of conductivity.

Mirri sees nanotube films as a viable alternative to indium tin oxide (ITO), the current standard conductive layer in transparent displays. "Everybody uses ITO for commercial applications, but the problem is it's a ceramic and really fragile," she said. "It's not good for flexible electronics, and also requires high temperature or vacuum processes to produce; that uses more energy and makes it more expensive.

"Our thin film for something like a cell phone would need very little material -- a few micrograms of nanotubes -- so it wouldn't be that expensive, but it would have similarproperties in transparency and conductivity to ITO," she said.

Co-authors are former postdoctoral researcher Anson Ma, now an assistant professor at the University of Connecticut; postdoctoral researchers Shannon Eichmann and Tienyi Theresa Hsu; former graduate student Natnael Behabtu, now a researcher at DuPont; graduate student Colin Young; and senior undergraduate Dmitri Tsentalovich, all of Rice.

The research was supported by the Air Force Office of Scientific Research, the Air Force Research Laboratories and the Robert A. Welch Foundation.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute forPublic Policy. With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 2 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to tinyurl.com/AboutRice.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Display technology/LEDs/SS Lighting/OLEDs

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

JunPus launched high-performance thermal grease for LED February 20th, 2015

Thin films

Researchers enable solar cells to use more sunlight February 25th, 2015

Detecting defects at the nanoscale will profit solar panel production: Researcher Mohamed Elrawemi develops new technologies for defects in thin films, vital in products as printed electronics and solar panels February 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

European roadmap for graphene science and technology published February 25th, 2015

Nanotubes/Buckyballs

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

SouthWest Nanotechnologies CEO Dave Arthur Appointed to the Board of Affiliates of Rice University Professional Science Master’s Program February 13th, 2015

Discoveries

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Announcements

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Military

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Perfect colors, captured with one ultra-thin lens: No need for color correction -- Harvard physicists' flat optics, using nanotechnology, get it right the first time February 19th, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

New nanogel for drug delivery: Self-healing gel can be injected into the body and act as a long-term drug depot February 19th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Cutting-edge technology optimizes cancer therapy with nanomedicine drug combinations: UCLA bioengineers develop platform that offers personalized approach to treatment February 24th, 2015

QD Vision Named Edison Award Finalist for Innovative Color IQ™ Quantum Dot Technology February 23rd, 2015

Rosetta Team Wins the National Space Society's Science and Engineering Space Pioneer Award February 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE