Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Scientists build 'nanobowls' to protect catalysts needed for better biofuel production

Abstract:
It may sound like a post-season football game for very tiny players, but the "nanobowl" has nothing to do with sports and everything to do with improving the way biofuels are produced. That's the hope of a team of scientists from the Institute for Atom Efficient Chemical Transformations (IACT), an Energy Frontier Research Center led by Argonne National Laboratory (ANL), and including Northwestern University, the University of Wisconsin and Purdue University. The team is using a layering technique developed for microchip manufacturing to build nanoscale (billionth of a meter) "bowls" that protect miniature metal catalysts from the harsh conditions of biofuel refining. Furthermore, the size, shape, and composition of the nanobowls can easily be tailored to enhance their functionality and specificity.

Scientists build 'nanobowls' to protect catalysts needed for better biofuel production

College Park, MD | Posted on October 28th, 2012

The team, led by Jeffrey Elam, principal chemist in ANL's Energy Systems Division, will present its research during the AVS 59th International Symposium and Exhibition, held Oct. 28-Nov. 2, 2012, in Tampa, Fla.

In recent years, nanoparticles of metals such as platinum, iridium and palladium supported on metal oxide surfaces have been considered as catalysts to convert biomass - organic matter from plants such as corn, sugarcane and sorghum - into alternative fuels as efficiently as possible. Unfortunately, under typical biorefining conditions where liquid water may reach temperatures of 200 degrees Celsius (392 degrees Fahrenheit) and pressures of 4,100 kilopascals (600 pounds per square inch), the tiny metal nanoparticles can agglomerate into much larger particles which are not catalytically active. Additionally, these extreme conditions can dissolve the support.

"We needed a method to protect the catalysts without reducing their ability to function as desired during biorefining," Elam says. "Our solution was to use atomic layer deposition [ALD], a process commonly employed by the semiconductor industry to lay down single-atom thick layers of material, to build a 'nanobowl' around the metal particle."

To create a matrix of nanobowls containing active catalysts, the researchers first use ALD to deposit millions of metal nanoparticles (the eventual nanocatalysts) onto a support surface. The next step is to add an organic species that will only bind to the metal nanoparticles and not to the support. This organic "protecting group" serves as the mold around which the nanobowls are shaped.

"Again using ALD, we deposit layer upon layer of an inorganic material known as niobia [niobium pentoxide] around the protecting group to define the shape of the nanobowls in our matrix," Elam says. "Once the desired niobia thickness is reached, we remove the protecting groups and leave our metal nanoparticles sheltered in nanobowls that prevent them from agglomerating. In addition, the niobia coating protects the substrate from the extreme conditions encountered during biorefining."

Elam says that the nanobowls themselves can be made to enhance the overall functionality of the catalyst matrix being produced. "At a specific height, we can put down ALD layers of catalytically active material into the nanobowl walls and create a co-catalyst that will work in tandem with the nanocatalysts. Also, by carefully selecting the organic protecting group, we can tune the size and shape of the nanobowl cavities to target specific molecules in the biomass mixture."

Elam and his colleagues have shown in the laboratory that the nanobowl/nanoparticle combination can survive the high-pressure, high-temperature aqueous environment of biomass refining. They also have demonstrated size and shape selectivity for the nanobowl catalysts. The next goal, he says, is to precisely measure how well the catalysts perform in an actual biomass refining process.

MORE INFORMATION ABOUT THE AVS 59th INTERNATIONAL SYMPOSIUM & EXHIBITION

The Tampa Convention Center is located along the Riverwalk in the heart of downtown Tampa at 333 S. Franklin St., Tampa, Florida, 33602.

ABOUT AVS

Founded in 1953, AVS is a not-for-profit professional society that promotes communication between academia, government laboratories, and industry for the purpose of sharing research and development findings over a broad range of technologically relevant topics. Its symposia and journals provide an important forum for the dissemination of information in many areas of science and technology, enabling a critical gateway for the rapid insertion of scientific breakthroughs into manufacturing realities.

####

For more information, please click here

Contacts:
Catherine Meyers

301-209-3088

Copyright © American Institute of Physics (AIP)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Main meeting website:

Technical Program:

Housing and Travel Information:

Related News Press

News and information

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Laboratories

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Chemistry

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Discoveries

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Announcements

Industrial Nanotech, Inc. to Publish PCAOB Audited Financials July 31st, 2014

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Energy

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Events/Classes

Arrowhead to Report Fiscal 2014 Third Quarter Financial Results- Conference Call Scheduled for Tuesday, August 12, 2014 - July 31st, 2014

FLAG-ERA and TNT2014 join efforts: Graphene Networking at its higher level in Barcelona: Encourage the participation in a joint transnational call July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

Research partnerships

Study finds physical link to strange electronic behavior: Neutron measurements offer new clues about iron-based superconductor July 31st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE