Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Microfluidic Breakthroughs Offer New Options for Ease and Accuracy in Extraction of Rare Cells or Separating Blood

Photo By: Xiao Wang
This image shows the size-dependent extraction of particles. The fluorescent image indicates trapping of larger particles while smaller particles pass through.
Photo By: Xiao Wang

This image shows the size-dependent extraction of particles. The fluorescent image indicates trapping of larger particles while smaller particles pass through.

Abstract:
Using something called "inertial microfluidics," University of Cincinnati researchers are able to continuously and selectively collect rare cells, such as circulating tumor cells, based on their size vs. other biomarkers. This could reduce analysis time and increase selectivity while reducing reliance on antibody-based testing in clinical tests.

Microfluidic Breakthroughs Offer New Options for Ease and Accuracy in Extraction of Rare Cells or Separating Blood

Cincinnati, OH | Posted on October 26th, 2012

At the Sixteenth International Conference on Miniaturized Systems for Chemistry and Life Sciences (microTAS) to be held Oct. 28-Nov. 1, in Okinawa, Japan, University of Cincinnati researchers will present four papers, including one detailing improvements in rare cell isolation and one detailing improvements, in terms of cost and time, of common blood tests.

Ian Papautsky, associate professor in UC's School of Electronic and Computing Systems (SECS), part of the College of Engineering and Applied Science, and a UC team are leading these research efforts.

In a paper titled "Continuous Rare Cell Extraction Using Self-Releasing Vortex in an Inertial Microfluidic Device" by Papautsky and co-authors Xiao Wang, UC doctoral student, and Jian Zhou, research associate, a new concept for separation of rare cells, such as prostate cancer cells or circulating tumor cells, using microfluidics, is detailed.

"Last year we showed we can selectively isolate prostate cancer cells, but only by running small sample volumes one at a time. Now we show that we can do this continuously," Papautsky said. "This is exciting because it allows for an entire blood draw to be processed, in continuous matter, in a shorter period of time."

These blood draws can be used to identify tumor cells for diagnostic or prognostic purposes. "Our approach is based purely on size. It doesn't rely on antibodies, which is important because not all cancer cells express antigens. So, if the cancer cells are, let's say, larger than 20 microns, we'll extract them," he explained.

The most common approach for looking for these circulating tumor cells is via a system that uses a selection using antibodies to detect antigens. "We could also use our device to prepare samples for systems that use antibody-based selection." This combined approach could potentially help reduce occurrence of false positives while significantly increasing the accuracy of the antibody-based tests.

Another area in which this device could be useful is in working with cell cultures. "If you have a mixture of multiple cells where some cells are small and other cells are big, we could separate these cell populations very easily," Papautsky explained. "Anytime you need to separate based on size, we can do it using inertial microfluidics."

The advantage of inertial microfluidics in cell separation is that it can be done easily and without cumbersome equipment. This research is leading to an entirely new generation of testing capabilities which particularly lend themselves to direct use in the field and in physicians' offices in just about any country and any economic setting.

In another paper, titled "Sorting of Blood in Spiral Microchannels" Papautsky and doctoral student Nivedita Nivedita demonstrate continuous sorting of blood utilizing inertial microfluidics via a simple passive microfluidic device. Papautsky's lab has been developing the concept of using inertia to manipulate cells and particles during the last few years. "It's truly different and innovative because these microfluidic devices are really low cost while offering very high throughput," said Papautsky.

The device is, essentially, a clear, plastic, flexible square that is relatively small in size, at about a half an inch across, but big in concept. "With this particular device we can take a drop of blood, put it in the input port in the center, and separate," Papautsky explained. The device contains four outlet ports which separate the blood into different streams, allowing the collection of outputs containing dilute plasma, red blood cells and white blood cells.

The most common approach for looking for these circulating tumor cells is via a system that uses a selection using antibodies to detect antigens. "We could also use our device to prepare samples for systems that use antibody-based selection." This combined approach could potentially help reduce occurrence of false positives while significantly increasing the accuracy of the antibody-based tests.

Another area in which this device could be useful is in working with cell cultures. "If you have a mixture of multiple cells where some cells are small and other cells are big, we could separate these cell populations very easily," Papautsky explained. "Anytime you need to separate based on size, we can do it using inertial microfluidics."

The advantage of inertial microfluidics in cell separation is that it can be done easily and without cumbersome equipment. This research is leading to an entirely new generation of testing capabilities which particularly lend themselves to direct use in the field and in physicians' offices in just about any country and any economic setting.

In another paper, titled "Sorting of Blood in Spiral Microchannels" Papautsky and doctoral student Nivedita Nivedita demonstrate continuous sorting of blood utilizing inertial microfluidics via a simple passive microfluidic device. Papautsky's lab has been developing the concept of using inertia to manipulate cells and particles during the last few years. "It's truly different and innovative because these microfluidic devices are really low cost while offering very high throughput," said Papautsky.

The device is, essentially, a clear, plastic, flexible square that is relatively small in size, at about a half an inch across, but big in concept. "With this particular device we can take a drop of blood, put it in the input port in the center, and separate," Papautsky explained. The device contains four outlet ports which separate the blood into different streams, allowing the collection of outputs containing dilute plasma, red blood cells and white blood cells.
spiral microchannels

####

For more information, please click here

Contacts:
M.B. Reilly

513-556-1824

Copyright © University of Cincinnati

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

CTI Materials drives nano commercialization with it's patented surfactant free nanoparticle dispersions August 15th, 2018

Microfluidics/Nanofluidics

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

Nanomedicine

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

New technology can detect hundreds of proteins in a single sample: Improvement of barcoding technique offers cost-effective alternative to current technology August 13th, 2018

Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again: Simple chemical technique transforms crystal mixture where 2 liquids meet August 9th, 2018

Nanoscience and the future of healthcare kick off first day of ACS national meeting in Boston: Presidential events highlight safety, diversity and groundbreaking research August 2nd, 2018

Discoveries

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

Announcements

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Research brief: UMN researchers use green gold to rapidly detect and identify harmful bacteria August 15th, 2018

Particles pull last drops of oil from well water: Rice University engineers find nanoscale solution to 'produced water' problem August 15th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

Events/Classes

Kavli Lectures: New vision of nanomaterial synthesis and light-fueled space travel August 8th, 2018

Nanoscience and the future of healthcare kick off first day of ACS national meeting in Boston: Presidential events highlight safety, diversity and groundbreaking research August 2nd, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

Strategic Materials Conference 2018 Highlights “Materials Shaping the Future of Electronics” July 30th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project