Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A 'nanoscale landscape' controls flow of surface electrons on a topological insulator: Stripe-like contours on a surface modulate electrons that behave like light

Abstract:
In the relatively new scientific frontier of topological insulators, theoretical and experimental physicists have been studying the surfaces of these unique materials for insights into the behavior of electrons that display some very un-electron-like properties.

A 'nanoscale landscape' controls flow of surface electrons on a topological insulator: Stripe-like contours on a surface modulate electrons that behave like light

Chestnut Hill, MA | Posted on October 25th, 2012

In topological insulators, electrons can behave more like photons, or particles of light. The hitch is that unlike photons, electrons have a mass that normally plays a defining role in their behavior. In the world of quantum physics, where everyday materials take on surprising and sometimes astonishing properties, electrons on the outer surface of these insulators behave and look uncharacteristically like light.

These unique properties have piqued the interests of scientists who see future applications in areas such as quantum computing and spintronics, or other realms rooted in the manipulation of electronic properties. The early challenge to those researchers is to begin to understand some simple ground rules for controlling these materials.

Boston College researchers report that the placement of tiny ripples on the surface of a topological insulator engineered from bismuth telluride effectively modulates so-called Dirac electrons so they flow in a pathway that perfectly mirrors the topography of the crystal's surface.

Associate Professor of Physics Vidya Madhavan and Assistant Professor of Physics Stephen Wilson report in the current online edition of Nature Communications that scanning tunneling microscopy is capable of revealing the characteristics of these tiny waves as they rise and fall, enabling the researchers to draw a direct connection between the features of the ripples and modulation of the waves across the material's surface.

Instead of chaotic behavior, the electrons flow in a path that mirrors the metal composite's surface, the team reports in an articled titled "Ripple-modulated electronic structure of a 3D topological insulator."

"What we've discovered is that electrons respond beautifully to this buckling of the material's surface," said Madhavan, the project director.

So harmoniously do the waves flow across the ripples - placed approximately 100 nanometers apart - that the researchers say further modifications of the crystal's "nanoscale landscape" could produce enough control to produce a one-dimensional quantum wire capable of carrying current with no dissipation.

The rippled surface appears to exert greater control and run less risk of creating imperfections than other methods, such as introducing chemical dopants, used in attempts to modulate the flow of electrons on the surface of other topological insulators, the researchers found.

Madhavan said the team had to provoke the electrons, which lay placidly atop the surface-state of the insulator, much like the glassy surface of an undisturbed lake. The team disrupted the electrons by introducing impurities, which had an effect similar to that of dropping a stone in a calm lake. This provocation produced waves of electrons that behave like waves of light as they travel pathways that mirror the contours created in the crystal.

"We did not expect the electrons to follow the topography," said Madhavan. "The topography imposes a sinusoidal potential upon the waves. The ripples create that potential by giving the electrons a landscape to follow. This is a way of possibly manipulating these electrons in topological insulators."

In addition to Madhavan and Wilson, the project team included post-doctoral researcher Yoshinori Okada and graduate students Wenwen Zhou, Daniel Walkup and Chetan Dhital.

NOTE: The report "Ripple-modulated electronic structure of a 3D topological insulator" can be cited via a digital object identifier (DOI) number. The DOI for this article is 10.1038/ncomms2150.

####

For more information, please click here

Contacts:
Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Spintronics

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Making spintronic neurons sing in unison November 18th, 2016

Chip Technology

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Quantum Computing

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

Chiral quantum optics: A new research field with bright perspectives January 31st, 2017

Scientists unveil new form of matter: Time crystals: Physicists repeatedly tweaked a group of ions to create first example of a non-equilibrium material January 27th, 2017

Discoveries

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Oxford Instruments announces Dr Brad Ramshaw of Cornell University, as winner of the 2017 Lee Osheroff Richardson Science Prize February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Announcements

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizardŽ AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project