Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > A 'nanoscale landscape' controls flow of surface electrons on a topological insulator: Stripe-like contours on a surface modulate electrons that behave like light

Abstract:
In the relatively new scientific frontier of topological insulators, theoretical and experimental physicists have been studying the surfaces of these unique materials for insights into the behavior of electrons that display some very un-electron-like properties.

A 'nanoscale landscape' controls flow of surface electrons on a topological insulator: Stripe-like contours on a surface modulate electrons that behave like light

Chestnut Hill, MA | Posted on October 25th, 2012

In topological insulators, electrons can behave more like photons, or particles of light. The hitch is that unlike photons, electrons have a mass that normally plays a defining role in their behavior. In the world of quantum physics, where everyday materials take on surprising and sometimes astonishing properties, electrons on the outer surface of these insulators behave and look uncharacteristically like light.

These unique properties have piqued the interests of scientists who see future applications in areas such as quantum computing and spintronics, or other realms rooted in the manipulation of electronic properties. The early challenge to those researchers is to begin to understand some simple ground rules for controlling these materials.

Boston College researchers report that the placement of tiny ripples on the surface of a topological insulator engineered from bismuth telluride effectively modulates so-called Dirac electrons so they flow in a pathway that perfectly mirrors the topography of the crystal's surface.

Associate Professor of Physics Vidya Madhavan and Assistant Professor of Physics Stephen Wilson report in the current online edition of Nature Communications that scanning tunneling microscopy is capable of revealing the characteristics of these tiny waves as they rise and fall, enabling the researchers to draw a direct connection between the features of the ripples and modulation of the waves across the material's surface.

Instead of chaotic behavior, the electrons flow in a path that mirrors the metal composite's surface, the team reports in an articled titled "Ripple-modulated electronic structure of a 3D topological insulator."

"What we've discovered is that electrons respond beautifully to this buckling of the material's surface," said Madhavan, the project director.

So harmoniously do the waves flow across the ripples - placed approximately 100 nanometers apart - that the researchers say further modifications of the crystal's "nanoscale landscape" could produce enough control to produce a one-dimensional quantum wire capable of carrying current with no dissipation.

The rippled surface appears to exert greater control and run less risk of creating imperfections than other methods, such as introducing chemical dopants, used in attempts to modulate the flow of electrons on the surface of other topological insulators, the researchers found.

Madhavan said the team had to provoke the electrons, which lay placidly atop the surface-state of the insulator, much like the glassy surface of an undisturbed lake. The team disrupted the electrons by introducing impurities, which had an effect similar to that of dropping a stone in a calm lake. This provocation produced waves of electrons that behave like waves of light as they travel pathways that mirror the contours created in the crystal.

"We did not expect the electrons to follow the topography," said Madhavan. "The topography imposes a sinusoidal potential upon the waves. The ripples create that potential by giving the electrons a landscape to follow. This is a way of possibly manipulating these electrons in topological insulators."

In addition to Madhavan and Wilson, the project team included post-doctoral researcher Yoshinori Okada and graduate students Wenwen Zhou, Daniel Walkup and Chetan Dhital.

NOTE: The report "Ripple-modulated electronic structure of a 3D topological insulator" can be cited via a digital object identifier (DOI) number. The DOI for this article is 10.1038/ncomms2150.

####

For more information, please click here

Contacts:
Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Spintronics

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Quantum drag:University of Iowa physicist says current in one iron magnetic sheet can create quantized spin waves in another, separate sheet July 22nd, 2016

A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time July 20th, 2016

A new spin on reality July 15th, 2016

Chip Technology

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Enhanced electron doping on iron superconductors discovered: IBS Centre for Correlated Electron Systems revises existing theories by raising the temperature for superconductivity August 17th, 2016

Quantum Computing

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

Record-breaking logic gate 'another important milestone' on road to quantum computers August 7th, 2016

Programmable ions set the stage for general-purpose quantum computers: A new quantum computer module combines proven techniques with advances in hardware and software August 4th, 2016

Discoveries

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Announcements

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic