Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Princeton/NIST Collaboration Puts Wheels on the Quantum Bus

Micrograph of a quantum bus device similar to the one measured for this experiment. Note the Princeton tiger is 1 mm from head to tail. The spin-orbit qubits are located at the nexus of the seven gate electrodes.
Credit: K. Petersson/Princeton
Micrograph of a quantum bus device similar to the one measured for this experiment. Note the Princeton tiger is 1 mm from head to tail. The spin-orbit qubits are located at the nexus of the seven gate electrodes.

Credit: K. Petersson/Princeton

Abstract:
In yet another step toward the realization of a practical quantum computer, scientists working at Princeton and the Joint Quantum Institute (JQI) have shown how a major hurdle in transferring information from one quantum bit, or qubit, to another might be overcome.* Their so-called "quantum bus" provides the link that would enable quantum processors to perform complex computations.

Princeton/NIST Collaboration Puts Wheels on the Quantum Bus

Gaithersburg, MD | Posted on October 24th, 2012

The JQI is a collaborative institute of the National Institute of Standards and Technology (NIST) and the University of Maryland College Park.

Qubits are unlike a classical bit because they can be not only a 1 or 0 but also both, simultaneously. This property of qubits, called superposition, helps give quantum computers a tremendous advantage over conventional computers when doing certain types of calculations. But these quantum states are fragile and short-lived, which makes designing ways for them to perform basic functions, such as getting qubits to talk to one another—or "coupling"—difficult.

"In order to couple qubits, we need to be able to move information about one to the other," says NIST physicist Jacob Taylor. "There are a few ways that this can be done and they usually involve moving around the particles themselves, which is very difficult to do quickly without destabilizing their spins—which are carrying the information—or transferring information about the spins to light. While this is easier than moving the particles themselves, the interaction between light and matter is generally very weak."

Taylor says you can think of their solution sort of like playing doubles tennis.

"Whether or not a team will be able to return a serve depends entirely on how well they play together," says Taylor. "If they are complementing each other, with one playing the front half of the court and the other playing the back half, they will be able to return the serve to the other set of players. If they are both trying to play in the front court or the back court they won't be able to return the serve and the ball will go past them. Similarly, if the spins of the electrons are complementary, their field will affect the field of the photon as it goes past, and the photon will carry the information about the electrons' spin to the other qubit. When the spins are not coupled, they will not affect the photon and no information will go to the other qubit."

The Princeton/JQI team's quantum bus is a hybrid system that marries two known quantum technologies—spin-orbit qubits and circuit quantum electrodynamics—with some tweaks. The spin-orbit qubits are a pair of indium-arsenide quantum dots that have been engineered to enable strong coupling between the spins of the electrons trapped inside the dot and the electrons' positions within the dot. This in turn allows the magnetic field of the qubit, comprising spins, to couple with the field of microwave photons traveling through a connected superconducting cavity.

The structure makes it possible for information about the qubits' spin to be transferred to the microwave cavity, which, with some additional tweaks could be transferred to another qubit.

The experiment, which was the culmination of five years of effort, took place at Princeton University. NIST/JQI provided assistance with the quantum theory.

* K.D. Petersson, L.W. McFaul, M.D. Schroer, M. Jung, J.M. Taylor, A.A. Houck and J.R. Petta. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380-383 (18 October 2012) doi:10.1038/nature11559

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Mark Esser
301-975-8735

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Laboratories

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Relieving electric vehicle range anxiety with improved batteries: Lithium-sulfur batteries last longer with nanomaterial-packed cathode April 16th, 2014

Energy Research Facility Construction Project at Brookhaven Lab Wins U.S. Energy Secretary's Achievement Award April 16th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Academic/Education

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Global 450 consortium announces new general manager of internal operations: TSMC’s Cheng-Chung Chien Receives Unanimous Support, Brings History of Innovation and Efficiency to Global Consortium of Companies Driving Industry Transition to 450mm Wafer Technology March 26th, 2014

NanoTecNexus to Host "Chemistry of Wine" Fundraiser in Support of STEM Education - Collaborations Key to Success - March 20th, 2014

Quantum Computing

Quantum manipulation: Filling the gap between quantum and classical world April 14th, 2014

Rainbow-catching waveguide could revolutionize energy technologies: By slowing and absorbing certain wavelengths of light, engineers open new possibilities in solar power, thermal energy recycling and stealth technology March 28th, 2014

Could Diamonds Be A Computer’s Best Friend? Landmark experiment reveals the precious gem’s potential in computing March 24th, 2014

Waterloo, Technion Partner to Advance Research, Commercialization March 19th, 2014

Discoveries

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Announcements

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE