Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Princeton/NIST Collaboration Puts Wheels on the Quantum Bus

Micrograph of a quantum bus device similar to the one measured for this experiment. Note the Princeton tiger is 1 mm from head to tail. The spin-orbit qubits are located at the nexus of the seven gate electrodes.
Credit: K. Petersson/Princeton
Micrograph of a quantum bus device similar to the one measured for this experiment. Note the Princeton tiger is 1 mm from head to tail. The spin-orbit qubits are located at the nexus of the seven gate electrodes.

Credit: K. Petersson/Princeton

Abstract:
In yet another step toward the realization of a practical quantum computer, scientists working at Princeton and the Joint Quantum Institute (JQI) have shown how a major hurdle in transferring information from one quantum bit, or qubit, to another might be overcome.* Their so-called "quantum bus" provides the link that would enable quantum processors to perform complex computations.

Princeton/NIST Collaboration Puts Wheels on the Quantum Bus

Gaithersburg, MD | Posted on October 24th, 2012

The JQI is a collaborative institute of the National Institute of Standards and Technology (NIST) and the University of Maryland College Park.

Qubits are unlike a classical bit because they can be not only a 1 or 0 but also both, simultaneously. This property of qubits, called superposition, helps give quantum computers a tremendous advantage over conventional computers when doing certain types of calculations. But these quantum states are fragile and short-lived, which makes designing ways for them to perform basic functions, such as getting qubits to talk to one another—or "coupling"—difficult.

"In order to couple qubits, we need to be able to move information about one to the other," says NIST physicist Jacob Taylor. "There are a few ways that this can be done and they usually involve moving around the particles themselves, which is very difficult to do quickly without destabilizing their spins—which are carrying the information—or transferring information about the spins to light. While this is easier than moving the particles themselves, the interaction between light and matter is generally very weak."

Taylor says you can think of their solution sort of like playing doubles tennis.

"Whether or not a team will be able to return a serve depends entirely on how well they play together," says Taylor. "If they are complementing each other, with one playing the front half of the court and the other playing the back half, they will be able to return the serve to the other set of players. If they are both trying to play in the front court or the back court they won't be able to return the serve and the ball will go past them. Similarly, if the spins of the electrons are complementary, their field will affect the field of the photon as it goes past, and the photon will carry the information about the electrons' spin to the other qubit. When the spins are not coupled, they will not affect the photon and no information will go to the other qubit."

The Princeton/JQI team's quantum bus is a hybrid system that marries two known quantum technologies—spin-orbit qubits and circuit quantum electrodynamics—with some tweaks. The spin-orbit qubits are a pair of indium-arsenide quantum dots that have been engineered to enable strong coupling between the spins of the electrons trapped inside the dot and the electrons' positions within the dot. This in turn allows the magnetic field of the qubit, comprising spins, to couple with the field of microwave photons traveling through a connected superconducting cavity.

The structure makes it possible for information about the qubits' spin to be transferred to the microwave cavity, which, with some additional tweaks could be transferred to another qubit.

The experiment, which was the culmination of five years of effort, took place at Princeton University. NIST/JQI provided assistance with the quantum theory.

* K.D. Petersson, L.W. McFaul, M.D. Schroer, M. Jung, J.M. Taylor, A.A. Houck and J.R. Petta. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380-383 (18 October 2012) doi:10.1038/nature11559

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Mark Esser
301-975-8735

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Laboratories

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Scientists develop way to upsize nanostructures into light, flexible 3-D printed materials: Virginia Tech, Livermore National Lab researchers develop hierarchical 3-D printed metallic materials July 20th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Enhancing molecular imaging with light: New technology platform increases spectroscopic resolution by 4 fold July 27th, 2016

Academic/Education

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

Quantum Computing

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

RMIT researchers make leap in measuring quantum states July 21st, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Discoveries

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

Beating the heat a challenge at the nanoscale: Rice University scientists detect thermal boundary that hinders ultracold experiments July 28th, 2016

Announcements

Pixel-array quantum cascade detector paves the way for portable thermal imaging devices: Research team from TU-Wien Center for Micro- and Nanostructures have developed a new 'cooler' sensing instrument thereby increasing energy-efficiency and enhancing mobility for diagnostic tes July 28th, 2016

Dirty to drinkable: Engineers develop novel hybrid nanomaterials to transform water July 28th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Penn team uses nanoparticles to break up plaque and prevent cavities July 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic