Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Princeton/NIST Collaboration Puts Wheels on the Quantum Bus

Micrograph of a quantum bus device similar to the one measured for this experiment. Note the Princeton tiger is 1 mm from head to tail. The spin-orbit qubits are located at the nexus of the seven gate electrodes.
Credit: K. Petersson/Princeton
Micrograph of a quantum bus device similar to the one measured for this experiment. Note the Princeton tiger is 1 mm from head to tail. The spin-orbit qubits are located at the nexus of the seven gate electrodes.

Credit: K. Petersson/Princeton

Abstract:
In yet another step toward the realization of a practical quantum computer, scientists working at Princeton and the Joint Quantum Institute (JQI) have shown how a major hurdle in transferring information from one quantum bit, or qubit, to another might be overcome.* Their so-called "quantum bus" provides the link that would enable quantum processors to perform complex computations.

Princeton/NIST Collaboration Puts Wheels on the Quantum Bus

Gaithersburg, MD | Posted on October 24th, 2012

The JQI is a collaborative institute of the National Institute of Standards and Technology (NIST) and the University of Maryland College Park.

Qubits are unlike a classical bit because they can be not only a 1 or 0 but also both, simultaneously. This property of qubits, called superposition, helps give quantum computers a tremendous advantage over conventional computers when doing certain types of calculations. But these quantum states are fragile and short-lived, which makes designing ways for them to perform basic functions, such as getting qubits to talk to one another—or "coupling"—difficult.

"In order to couple qubits, we need to be able to move information about one to the other," says NIST physicist Jacob Taylor. "There are a few ways that this can be done and they usually involve moving around the particles themselves, which is very difficult to do quickly without destabilizing their spins—which are carrying the information—or transferring information about the spins to light. While this is easier than moving the particles themselves, the interaction between light and matter is generally very weak."

Taylor says you can think of their solution sort of like playing doubles tennis.

"Whether or not a team will be able to return a serve depends entirely on how well they play together," says Taylor. "If they are complementing each other, with one playing the front half of the court and the other playing the back half, they will be able to return the serve to the other set of players. If they are both trying to play in the front court or the back court they won't be able to return the serve and the ball will go past them. Similarly, if the spins of the electrons are complementary, their field will affect the field of the photon as it goes past, and the photon will carry the information about the electrons' spin to the other qubit. When the spins are not coupled, they will not affect the photon and no information will go to the other qubit."

The Princeton/JQI team's quantum bus is a hybrid system that marries two known quantum technologies—spin-orbit qubits and circuit quantum electrodynamics—with some tweaks. The spin-orbit qubits are a pair of indium-arsenide quantum dots that have been engineered to enable strong coupling between the spins of the electrons trapped inside the dot and the electrons' positions within the dot. This in turn allows the magnetic field of the qubit, comprising spins, to couple with the field of microwave photons traveling through a connected superconducting cavity.

The structure makes it possible for information about the qubits' spin to be transferred to the microwave cavity, which, with some additional tweaks could be transferred to another qubit.

The experiment, which was the culmination of five years of effort, took place at Princeton University. NIST/JQI provided assistance with the quantum theory.

* K.D. Petersson, L.W. McFaul, M.D. Schroer, M. Jung, J.M. Taylor, A.A. Houck and J.R. Petta. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380-383 (18 October 2012) doi:10.1038/nature11559

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Mark Esser
301-975-8735

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Laboratories

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Quantum Computing

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Magic wavelengths: Tuning up Rydberg atoms for quantum information applications May 12th, 2015

Discoveries

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project