Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Well-ordered nanorods could improve LED displays

Abstract:
Scientists have utilized the imaging capabilities of the Cornell High Energy Synchrotron Source (CHESS) to help develop enhanced light-emitting diode displays using bottom-up engineering methods.

Well-ordered nanorods could improve LED displays

Ithaca, NY | Posted on October 24th, 2012

Collaborative work between researchers from the University of Florida and CHESS has resulted in a novel way to make colloidal "superparticles" from oriented nanorods of semiconducting materials. The work was published in the journal Science, Oct. 19.

The team synthesized nanorods with a cadmium selenide and cadmium sulfide shell. Taking advantage of the compounds' lattice mismatch interfaces, they assembled these rods into larger periodic colloidal structures, called superparticles.

The superparticles exhibit enhanced light emission and polarization, features that are important for fabrication of LED televisions and computer screens. The nucleated superparticles can further be cast into macroscopic polarized films. The films could increase efficiency in polarized LED television and computer screen by as much as 50 percent, the researchers say.

The team, which included CHESS scientist Zhongwu Wang, made use of the CHESS facility to collect small angle X-ray scattering data from specimens inside tiny diamond-anvil cells. They used this technique, in combination with high-resolution transmission electron microscopy, to analyze how nanorods with attached organic components could be formed into well-ordered structures.

The nanorods first align within a layer as hexagonally ordered arrays. Then the highly ordered nanorod arrays behave like a series of layered units, self-assembling into structures that exhibit long-range order as they grow into large superparticles. The elongated superparticles can be aligned in a polymer matrix into macroscopic films.

The project demonstrates how scientists are learning to recognize and exploit anisotropic interactions between nanorods, which can be adjusted during the synthesis process, to create single-domain, needle-like particles. The authors hope their work can lead to new processes of self-assembly to create nano-objects with other anisotropic shapes, perhaps even joining two or more types of objects to form well-defined mesoscopic and macroscopic architectures with greater and greater complexity.

The team was led by Charles Cao, professor of chemistry at the University of Florida. The lead author of the paper was Tie Wang of Cao's group.

####

For more information, please click here

Contacts:
Media Contact:
John Carberry
(607) 255-5353


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

News and information

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Discoveries

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Announcements

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Tools

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Research partnerships

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic