Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > New Grant to Fuel Solar Energy Research

Abstract:
The Leona M. and Harry B. Helmsley Charitable Trust announced a gift of $15 million over three years to fund joint research in solar energy and biofuels between the Weizmann Institute of Science and the Technion - Israel Institute of Technology.

New Grant to Fuel Solar Energy Research

Rehovot, Israel | Posted on October 24th, 2012

The Leona M. and Harry B. Helmsley Charitable Trust announced a gift of $15 million over three years to fund joint research in solar energy and biofuels between the Weizmann Institute of Science and the Technion - Israel Institute of Technology.

The Helmsley program, which will involve dozens of researchers from the two institutions, is unique in several ways. For one, scientists in fields ranging from genetics and plant sciences to chemistry, physics and engineering will be working together toward the common goal of providing renewable energy options to Israel and the world. For another, the researchers anticipate that wedding the basic research approach of the Weizmann Institute to the advanced technical-engineering emphasis of the Technion teams will provide the synergy needed to accelerate discovery and development of innovative energy options that can be the basis for future technologies.

In addition to advancing new avenues of research, the new gift will serve to expand and strengthen the success of existing alternative energy programs, including the Weizmann Institute's Alternative Energy Research Initiative (AERI), the Grand Technion Energy Program (GTEP) and the Israeli Center of Research Excellence (ICORE) in alternative energy. The Weizmann Institute and Technion participate along with the Ben-Gurion University of the Negev in the latter.

Initially, the research projects will focus on three key areas: biofuels, photovoltaics and optics for light harvesting. The biofuels research includes generating effective methods for breaking down waste plant matter into usable fuel resources, developing algae that can produce biofuels economically and developing plants that can be grown sustainably and provide materials that can easily be converted to biofuel. The Helmsley initiative will help fund state-of-the-art facilities at the Weizmann Institute to advance this research.

The other two areas of focus - photovoltaics and optics - will include the creation of new materials that can use a larger portion of the sun's energy (today's cells use only a limited part of the sunlight) and innovative ways of efficiently converting that energy to electricity. The optics research will involve some of the most cutting-edge materials design and research available, including plasmonics, nanostructures and metamaterials studies.

The Weizmann Institute's Prof. David Cahen heads the Helmsley project together with Prof. Gideon Grader of the Technion. They expect that a number of the research teams will find themselves working in all three areas in parallel, as the best solutions, including the more distant goal of artificial photosynthesis, are likely to involve combinations of the three.

Cahen: "Alternative energy is one of the most important, as well as one of the most exciting, fields of research today. With this grant from the Helmsley Trust, we hope to attract bright, innovative researchers and students to the field. We know that a whole array of energy options will be needed to replace today's nonrenewable and polluting fossil fuels; all of our present efforts are essential to ensure our energy future."

Prof. David Cahen's research is supported by the Ben B. and Joyce E. Eisenberg Foundation Endowment Fund; the Monroe and Marjorie Burk Fund for Alternative Energy Studies; the Mary and Tom Beck Canadian Center for Alternative Energy Research, which he heads; the Leona M. and Harry B. Helmsley Charitable Trust; the Carolito Stiftung; the Wolfson Family Charitable Trust; the Charles and David Wolfson Charitable Trust; the estate of Theodore E. Rifkin; the Irving and Varda Rabin Foundation of the Jewish Community Foundation; and the Nancy and Stephen Grand Center for Sensors and Security. Prof. Cahen is the incumbent of the Rowland and Sylvia Schaefer Professorial Chair in Energy Research.

####

About Weizmann Institute of Science
The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

For more information, please click here

Contacts:
Batya Greenman
Publications and Media Relations Department
Weizmann Institute of Science
P.O. Box 26
Rehovot 76100 Israel
T: +972 (0)8 934 3852
Cell: +972 (0)54 2638877
F: +972 (0)8 934 4132

Copyright © Weizmann Institute of Science

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Announcements

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Energy

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers watch catalysts at work August 19th, 2016

Curbing the life-long effects of traumatic brain injury August 19th, 2016

Research partnerships

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Tracing barnacle's footprint August 19th, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic