Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Assembly of nano-machines mimics human muscle

Abstract:
For the first time, an assembly of thousands of nano-machines capable of producing a coordinated contraction movement extending up to around ten micrometers, like the movements of muscular fibers, has been synthesized by a CNRS team from the Institut Charles Sadron. This innovative work, headed by Nicolas Giuseppone, professor at the Université de Strasbourg, and involving researchers from the Laboratoire de Matière et Systèmes Complexes (CNRS/Université Paris Diderot), provides an experimental validation of a biomimetic approach that has been conceptualized for some years in the field of nanosciences. This discovery opens up perspectives for a multitude of applications in robotics, in nanotechnology for the storage of information, in the medical field for the synthesis of artificial muscles or in the design of other materials incorporating nano-machines (endowed with novel mechanical properties). This work has been published in the on-line version of the journal Angewandte Chemie International Edition.

Assembly of nano-machines mimics human muscle

Paris, France | Posted on October 24th, 2012

Nature manufactures numerous machines known as "molecular". Highly complex assemblies of proteins, they are involved in essential functions of living beings such as the transport of ions, the synthesis of ATP (the "energy molecule"), and cell division. Our muscles are thus controlled by the coordinated movement of these thousands of protein nano-machines, which only function individually over distances of the order of a nanometer. However, when combined in their thousands, such nano-machines amplify this telescopic movement until they reach our scale and do so in a perfectly coordinated manner. Even though synthetic chemists have made dazzling progress over the last few years in the manufacture of artificial nano-machines (the mechanical properties of which are of increasing interest for research and industry), the coordination of several of these machines in space and in time hitherto remained an unresolved problem.

Not anymore: for the first time, Giuseppone's team has succeeded in synthesizing long polymer chains incorporating, via supramolecular bonds (1), thousands of nano-machines each capable of producing linear telescopic motion of around one nanometer. Under the influence of pH, their simultaneous movements allow the whole polymer chain to contract or extend over about 10 micrometers, thereby amplifying the movement by a factor of 10,000, along the same principles as those used by muscular tissues. Precise measurements of this experimental feat have been performed in collaboration with the team led by Eric Buhler, a physicist specialized in radiation scattering at the Laboratoire Matière et Systèmes Complexes (CNRS/Université Paris Diderot).

These results, obtained using a biomimetic approach, could lead to numerous applications for the design of artificial muscles, micro-robots or the development of new materials incorporating nano-machines endowed with novel multi-scale mechanical properties.

(1) A supramolecular bond is an interaction between different molecules that is not based on a traditional "covalent" chemical bond but instead on what are known as "weak interactions", thereby constituting complex molecular structures.

Full bibliographic information

Muscle-like Supramolecular Polymers - Integrated Motion from Thousands of Molecular Machines, G. Du, E. Moulin, N. Jouault, E. Buhler, N. Giuseppone, Angew. Chem. Int. Ed. On line on the 18/10/2012 (DOI: 10.1002/ange.201206571).

####

For more information, please click here

Contacts:
Julien Guillaume
+ 33 1 44 96 51 51


Researcher :
Nicolas Giuseppone
T 03 88 41 41 66


CNRS press officer
Laetitia Louis
T 01 44 96 51 37


Bureau de presse du CNRS
T 01 44 96 51 51

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Possible Futures

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Molecular Machines

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Measuring the nanoworld September 4th, 2018

All wired up: New molecular wires for single-molecule electronic devices August 31st, 2018

Nanotubes change the shape of water: Rice University engineers show how water molecules square up in nanotubes HOUSTON August 24th, 2018

Molecular Nanotechnology

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Measuring the nanoworld September 4th, 2018

All wired up: New molecular wires for single-molecule electronic devices August 31st, 2018

Nanotubes change the shape of water: Rice University engineers show how water molecules square up in nanotubes HOUSTON August 24th, 2018

Memory Technology

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

A molecular switch at the edge of graphene July 27th, 2018

Magnetic skyrmions: Not the only ones of their class: Jülich researchers discover a new type of magnetic particle-like object for data storage devices of the future June 28th, 2018

Nanomedicine

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project