Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Assembly of nano-machines mimics human muscle

Abstract:
For the first time, an assembly of thousands of nano-machines capable of producing a coordinated contraction movement extending up to around ten micrometers, like the movements of muscular fibers, has been synthesized by a CNRS team from the Institut Charles Sadron. This innovative work, headed by Nicolas Giuseppone, professor at the Université de Strasbourg, and involving researchers from the Laboratoire de Matière et Systèmes Complexes (CNRS/Université Paris Diderot), provides an experimental validation of a biomimetic approach that has been conceptualized for some years in the field of nanosciences. This discovery opens up perspectives for a multitude of applications in robotics, in nanotechnology for the storage of information, in the medical field for the synthesis of artificial muscles or in the design of other materials incorporating nano-machines (endowed with novel mechanical properties). This work has been published in the on-line version of the journal Angewandte Chemie International Edition.

Assembly of nano-machines mimics human muscle

Paris, France | Posted on October 24th, 2012

Nature manufactures numerous machines known as "molecular". Highly complex assemblies of proteins, they are involved in essential functions of living beings such as the transport of ions, the synthesis of ATP (the "energy molecule"), and cell division. Our muscles are thus controlled by the coordinated movement of these thousands of protein nano-machines, which only function individually over distances of the order of a nanometer. However, when combined in their thousands, such nano-machines amplify this telescopic movement until they reach our scale and do so in a perfectly coordinated manner. Even though synthetic chemists have made dazzling progress over the last few years in the manufacture of artificial nano-machines (the mechanical properties of which are of increasing interest for research and industry), the coordination of several of these machines in space and in time hitherto remained an unresolved problem.

Not anymore: for the first time, Giuseppone's team has succeeded in synthesizing long polymer chains incorporating, via supramolecular bonds (1), thousands of nano-machines each capable of producing linear telescopic motion of around one nanometer. Under the influence of pH, their simultaneous movements allow the whole polymer chain to contract or extend over about 10 micrometers, thereby amplifying the movement by a factor of 10,000, along the same principles as those used by muscular tissues. Precise measurements of this experimental feat have been performed in collaboration with the team led by Eric Buhler, a physicist specialized in radiation scattering at the Laboratoire Matière et Systèmes Complexes (CNRS/Université Paris Diderot).

These results, obtained using a biomimetic approach, could lead to numerous applications for the design of artificial muscles, micro-robots or the development of new materials incorporating nano-machines endowed with novel multi-scale mechanical properties.

(1) A supramolecular bond is an interaction between different molecules that is not based on a traditional "covalent" chemical bond but instead on what are known as "weak interactions", thereby constituting complex molecular structures.

Full bibliographic information

Muscle-like Supramolecular Polymers - Integrated Motion from Thousands of Molecular Machines, G. Du, E. Moulin, N. Jouault, E. Buhler, N. Giuseppone, Angew. Chem. Int. Ed. On line on the 18/10/2012 (DOI: 10.1002/ange.201206571).

####

For more information, please click here

Contacts:
Julien Guillaume
+ 33 1 44 96 51 51


Researcher :
Nicolas Giuseppone
T 03 88 41 41 66


CNRS press officer
Laetitia Louis
T 01 44 96 51 37


Bureau de presse du CNRS
T 01 44 96 51 51

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Possible Futures

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Molecular Machines

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Micro-bubbles make big impact: Research team develops new ultrasound-powered actuator to develop micro robot November 25th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

HKU chemists develop world's first light-seeking synthetic Nanorobot November 9th, 2016

Molecular Nanotechnology

First 3-D observation of nanomachines working inside cells: Researchers headed by IRB Barcelona combine genetic engineering, super-resolution microscopy and biocomputation to allow them to see in 3-D the protein machinery inside living cells January 27th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

Scientists come up with light-driven motors to power nanorobots of the future: Researchers from Russia and Ukraine propose a nanosized motor controlled by a laser with potential applications across the natural sciences and medicine November 11th, 2016

Memory Technology

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

Nanomedicine

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Discoveries

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project