Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NRL Researchers Discover New Route to Spin-Polarized Contacts on Silicon

NRL scientists successfully used graphene, a single layer of carbon atoms in a honeycomb lattice (gray), as a tunnel barrier to electrically inject spin polarized electrons from a ferromagnetic NiFe contact (red) into a silicon substrate (purple). The net spin accumulation in the silicon produces a voltage, which can be directly measured. Spin injection, manipulation and detection are the fundamental elements allowing information processing with the electron spin rather than its charge.
(Image: U.S. Naval Research Laboratory)
NRL scientists successfully used graphene, a single layer of carbon atoms in a honeycomb lattice (gray), as a tunnel barrier to electrically inject spin polarized electrons from a ferromagnetic NiFe contact (red) into a silicon substrate (purple). The net spin accumulation in the silicon produces a voltage, which can be directly measured. Spin injection, manipulation and detection are the fundamental elements allowing information processing with the electron spin rather than its charge.

(Image: U.S. Naval Research Laboratory)

Abstract:
Scientists at the Naval Research Laboratory have demonstrated that graphene, a single layer of carbon atoms in a honeycomb lattice, can serve as a low resistance spin-polarized tunnel barrier contact which successfully enables spin injection/detection in silicon from a ferromagnetic metal. The graphene provides a highly uniform, chemically inert and thermally robust tunnel barrier free of defects and trap states which plague oxide barriers. This discovery clears an important hurdle to the development of future semiconductor spintronic devices, that is, devices which rely on manipulating the electron's spin rather than its charge for low-power, high-speed information processing beyond the traditional size scaling of Moore's Law. The research results are reported in a paper published in Nature Nanotechnology on September 30, 2012 (DOI 10.1038/nnano.2012.161).

NRL Researchers Discover New Route to Spin-Polarized Contacts on Silicon

Washington, DC | Posted on October 23rd, 2012

Ferromagnetic metals, such as iron or permalloy, have intrinsically spin-polarized electron populations (more "spin-up" electrons than "spin-down", see figure), and are thus ideal contacts for injection and detection of spin in a semiconductor. An intervening tunnel barrier is required to avoid saturation of both semiconductor spin channels by the much larger metal conductivity - this would otherwise result in no net spin polarization in the semiconductor. However, the oxide barriers typically used (such as Al2O3 or MgO) introduce defects, trapped charge and interdiffusion, and have resistances, which are too high - all of these factors severely impact the performance. To solve this problem, the NRL research team, led by Dr. Berend Jonker, used single layer graphene as the tunnel barrier. This novel approach utilizes a defect resistant, chemically inert and stable material with well-controlled thickness to achieve a low resistance spin contact compatible with both the ferromagnetic metal and semiconductor of choice. These qualities insure minimal diffusion to/ and from the surrounding materials at temperatures required for device manufacturing.

The research team used this approach to demonstrate electrical generation and detection of spin accumulation in silicon above room temperature, and showed that the contact resistance-area products are 100 to 1000 times lower than achieved with oxide tunnel barriers on silicon substrates with identical doping levels.

These results identify a new route to low resistance-area product spin-polarized contacts, a key requirement for semiconductor spintronic devices that rely upon two-terminal magnetoresistance, including spin-based transistors, logic and memory, explains NRL's Dr. Berend Jonker.

In looking to the future, the NRL team suggests that the use of multilayer graphene in such structures may provide much higher values of the tunnel spin polarization due to band structure derived spin filtering effects which have been predicted for selected ferromagnetic metal / multi-layer graphene structures. This increase would improve the performance of semiconductor spintronic devices by providing higher signal to noise ratios and corresponding operating speeds, advancing the techological applications of silicon spintronics.

The NRL research team includes Dr. Olaf van 't Erve, Dr. Adam Friedman, Dr. Enrique Cobas, Dr. Connie Li, and Dr. Berend Jonker from the Materials Science and Technology Division, and Dr. Jeremy Robinson from the Electronics Science and Technology Division.

####

About Naval Research Laboratory
The U.S. Naval Research Laboratory is the Navy's full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 85 years and continues to meet the complex technological challenges of today's world. For more information, visit the NRL homepage or join the conversation on Twitter, Facebook, and YouTube.

For more information, please click here

Contacts:
Donna McKinney
(202) 767-2541

Copyright © U.S. Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

Graphene/ Graphite

New quantum phenomena in graphene superlattices September 18th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Chip Technology

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Discoveries

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Announcements

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Military

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project