Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NRL Researchers Discover New Route to Spin-Polarized Contacts on Silicon

NRL scientists successfully used graphene, a single layer of carbon atoms in a honeycomb lattice (gray), as a tunnel barrier to electrically inject spin polarized electrons from a ferromagnetic NiFe contact (red) into a silicon substrate (purple). The net spin accumulation in the silicon produces a voltage, which can be directly measured. Spin injection, manipulation and detection are the fundamental elements allowing information processing with the electron spin rather than its charge.
(Image: U.S. Naval Research Laboratory)
NRL scientists successfully used graphene, a single layer of carbon atoms in a honeycomb lattice (gray), as a tunnel barrier to electrically inject spin polarized electrons from a ferromagnetic NiFe contact (red) into a silicon substrate (purple). The net spin accumulation in the silicon produces a voltage, which can be directly measured. Spin injection, manipulation and detection are the fundamental elements allowing information processing with the electron spin rather than its charge.

(Image: U.S. Naval Research Laboratory)

Abstract:
Scientists at the Naval Research Laboratory have demonstrated that graphene, a single layer of carbon atoms in a honeycomb lattice, can serve as a low resistance spin-polarized tunnel barrier contact which successfully enables spin injection/detection in silicon from a ferromagnetic metal. The graphene provides a highly uniform, chemically inert and thermally robust tunnel barrier free of defects and trap states which plague oxide barriers. This discovery clears an important hurdle to the development of future semiconductor spintronic devices, that is, devices which rely on manipulating the electron's spin rather than its charge for low-power, high-speed information processing beyond the traditional size scaling of Moore's Law. The research results are reported in a paper published in Nature Nanotechnology on September 30, 2012 (DOI 10.1038/nnano.2012.161).

NRL Researchers Discover New Route to Spin-Polarized Contacts on Silicon

Washington, DC | Posted on October 23rd, 2012

Ferromagnetic metals, such as iron or permalloy, have intrinsically spin-polarized electron populations (more "spin-up" electrons than "spin-down", see figure), and are thus ideal contacts for injection and detection of spin in a semiconductor. An intervening tunnel barrier is required to avoid saturation of both semiconductor spin channels by the much larger metal conductivity - this would otherwise result in no net spin polarization in the semiconductor. However, the oxide barriers typically used (such as Al2O3 or MgO) introduce defects, trapped charge and interdiffusion, and have resistances, which are too high - all of these factors severely impact the performance. To solve this problem, the NRL research team, led by Dr. Berend Jonker, used single layer graphene as the tunnel barrier. This novel approach utilizes a defect resistant, chemically inert and stable material with well-controlled thickness to achieve a low resistance spin contact compatible with both the ferromagnetic metal and semiconductor of choice. These qualities insure minimal diffusion to/ and from the surrounding materials at temperatures required for device manufacturing.

The research team used this approach to demonstrate electrical generation and detection of spin accumulation in silicon above room temperature, and showed that the contact resistance-area products are 100 to 1000 times lower than achieved with oxide tunnel barriers on silicon substrates with identical doping levels.

These results identify a new route to low resistance-area product spin-polarized contacts, a key requirement for semiconductor spintronic devices that rely upon two-terminal magnetoresistance, including spin-based transistors, logic and memory, explains NRL's Dr. Berend Jonker.

In looking to the future, the NRL team suggests that the use of multilayer graphene in such structures may provide much higher values of the tunnel spin polarization due to band structure derived spin filtering effects which have been predicted for selected ferromagnetic metal / multi-layer graphene structures. This increase would improve the performance of semiconductor spintronic devices by providing higher signal to noise ratios and corresponding operating speeds, advancing the techological applications of silicon spintronics.

The NRL research team includes Dr. Olaf van 't Erve, Dr. Adam Friedman, Dr. Enrique Cobas, Dr. Connie Li, and Dr. Berend Jonker from the Materials Science and Technology Division, and Dr. Jeremy Robinson from the Electronics Science and Technology Division.

####

About Naval Research Laboratory
The U.S. Naval Research Laboratory is the Navy's full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 85 years and continues to meet the complex technological challenges of today's world. For more information, visit the NRL homepage or join the conversation on Twitter, Facebook, and YouTube.

For more information, please click here

Contacts:
Donna McKinney
(202) 767-2541

Copyright © U.S. Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK announces expansion of its global sales and service activities in China and USA April 15th, 2014

Nanobiotix Appoints Thierry Otin as Head of Manufacturing and Supply April 15th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Graphene

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Graphene Supermarket to offer HDPlas™ by Haydale, a High-Performance Graphene Material April 10th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Graphene nanoribbons as electronic switches: A new theoretical study shows the conductivity conditions under which graphene nanoribbons can become switches in externally controlled electronic devices April 8th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Engineers develop new materials for hydrogen storage April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Spintronics

Could Diamonds Be A Computer’s Best Friend? Landmark experiment reveals the precious gem’s potential in computing March 24th, 2014

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices March 21st, 2014

Relativity shakes a magnet: Researchers from Mainz University demonstrate a new principle for magnetic recording / Publication in Nature Nanotechnology March 4th, 2014

Ion beams pave way to new kinds of valves for use in spintronics February 18th, 2014

Chip Technology

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Clean Shot at Manufacturing Course…For Less April 9th, 2014

Discoveries

Engineers develop new materials for hydrogen storage April 15th, 2014

Nanocrystalline cellulose modified into an efficient viral inhibitor April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Announcements

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Military

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Scalable CVD process for making 2-D molybdenum diselenide: Rice, NTU scientists unveil CVD production for coveted 2-D semiconductor April 8th, 2014

Rebar technique strengthens case for graphene: Rice University lab makes hybrid nanotube-graphene material that promises to simplify manufacturing April 7th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE