Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NRL Researchers Discover New Route to Spin-Polarized Contacts on Silicon

NRL scientists successfully used graphene, a single layer of carbon atoms in a honeycomb lattice (gray), as a tunnel barrier to electrically inject spin polarized electrons from a ferromagnetic NiFe contact (red) into a silicon substrate (purple). The net spin accumulation in the silicon produces a voltage, which can be directly measured. Spin injection, manipulation and detection are the fundamental elements allowing information processing with the electron spin rather than its charge.
(Image: U.S. Naval Research Laboratory)
NRL scientists successfully used graphene, a single layer of carbon atoms in a honeycomb lattice (gray), as a tunnel barrier to electrically inject spin polarized electrons from a ferromagnetic NiFe contact (red) into a silicon substrate (purple). The net spin accumulation in the silicon produces a voltage, which can be directly measured. Spin injection, manipulation and detection are the fundamental elements allowing information processing with the electron spin rather than its charge.

(Image: U.S. Naval Research Laboratory)

Abstract:
Scientists at the Naval Research Laboratory have demonstrated that graphene, a single layer of carbon atoms in a honeycomb lattice, can serve as a low resistance spin-polarized tunnel barrier contact which successfully enables spin injection/detection in silicon from a ferromagnetic metal. The graphene provides a highly uniform, chemically inert and thermally robust tunnel barrier free of defects and trap states which plague oxide barriers. This discovery clears an important hurdle to the development of future semiconductor spintronic devices, that is, devices which rely on manipulating the electron's spin rather than its charge for low-power, high-speed information processing beyond the traditional size scaling of Moore's Law. The research results are reported in a paper published in Nature Nanotechnology on September 30, 2012 (DOI 10.1038/nnano.2012.161).

NRL Researchers Discover New Route to Spin-Polarized Contacts on Silicon

Washington, DC | Posted on October 23rd, 2012

Ferromagnetic metals, such as iron or permalloy, have intrinsically spin-polarized electron populations (more "spin-up" electrons than "spin-down", see figure), and are thus ideal contacts for injection and detection of spin in a semiconductor. An intervening tunnel barrier is required to avoid saturation of both semiconductor spin channels by the much larger metal conductivity - this would otherwise result in no net spin polarization in the semiconductor. However, the oxide barriers typically used (such as Al2O3 or MgO) introduce defects, trapped charge and interdiffusion, and have resistances, which are too high - all of these factors severely impact the performance. To solve this problem, the NRL research team, led by Dr. Berend Jonker, used single layer graphene as the tunnel barrier. This novel approach utilizes a defect resistant, chemically inert and stable material with well-controlled thickness to achieve a low resistance spin contact compatible with both the ferromagnetic metal and semiconductor of choice. These qualities insure minimal diffusion to/ and from the surrounding materials at temperatures required for device manufacturing.

The research team used this approach to demonstrate electrical generation and detection of spin accumulation in silicon above room temperature, and showed that the contact resistance-area products are 100 to 1000 times lower than achieved with oxide tunnel barriers on silicon substrates with identical doping levels.

These results identify a new route to low resistance-area product spin-polarized contacts, a key requirement for semiconductor spintronic devices that rely upon two-terminal magnetoresistance, including spin-based transistors, logic and memory, explains NRL's Dr. Berend Jonker.

In looking to the future, the NRL team suggests that the use of multilayer graphene in such structures may provide much higher values of the tunnel spin polarization due to band structure derived spin filtering effects which have been predicted for selected ferromagnetic metal / multi-layer graphene structures. This increase would improve the performance of semiconductor spintronic devices by providing higher signal to noise ratios and corresponding operating speeds, advancing the techological applications of silicon spintronics.

The NRL research team includes Dr. Olaf van 't Erve, Dr. Adam Friedman, Dr. Enrique Cobas, Dr. Connie Li, and Dr. Berend Jonker from the Materials Science and Technology Division, and Dr. Jeremy Robinson from the Electronics Science and Technology Division.

####

About Naval Research Laboratory
The U.S. Naval Research Laboratory is the Navy's full-spectrum corporate laboratory, conducting a broadly based multidisciplinary program of scientific research and advanced technological development. The Laboratory, with a total complement of nearly 2,500 personnel, is located in southwest Washington, D.C., with other major sites at the Stennis Space Center, Miss., and Monterey, Calif. NRL has served the Navy and the nation for over 85 years and continues to meet the complex technological challenges of today's world. For more information, visit the NRL homepage or join the conversation on Twitter, Facebook, and YouTube.

For more information, please click here

Contacts:
Donna McKinney
(202) 767-2541

Copyright © U.S. Naval Research Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Phenom-World Launches Phenom Pro and ProX Generation 5 SEMs at Microscopy & Microanalysis Conference USA: The excellent performance in a wide range of applications offers a serious alternative to floor model SEMs July 26th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The School of Materials at the University of Manchester utilise Debens mechanical stages to characterise structure and behaviour at the micro- and nano- scale July 25th, 2017

Graphene/ Graphite

Scientists produce dialysis membrane made from graphene: Material can filter nanometer-sized molecules at 10 to 100 times the rate of commercial membranes June 29th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Thought Leaders and Experts Join National Graphene Association Advisory Board June 16th, 2017

Seeing the invisible with a graphene-CMOS integrated device June 6th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The first light atomic nucleus with a second face July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Chip Technology

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Discoveries

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Announcements

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Phenom-World Launches Phenom Pro and ProX Generation 5 SEMs at Microscopy & Microanalysis Conference USA: The excellent performance in a wide range of applications offers a serious alternative to floor model SEMs July 26th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The School of Materials at the University of Manchester utilise Debens mechanical stages to characterise structure and behaviour at the micro- and nano- scale July 25th, 2017

Military

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project