Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Lung mucus gel scaffold prevents nanoparticles from getting through: Joint press release by the Saarland University and the Helmholtz Centre for Infection Research

Scientists at the Saarland University and the Helmholtz Centre for Infection Research unraveled lung mucus’s physical properties: They discovered that a rigid gel scaffold in lung mucus separates large, fluid-filled pores and prevents nanoparticle movement beyond individual pore boundaries.

Credit: Credit: Schneider/ Kirch et al.
Scientists at the Saarland University and the Helmholtz Centre for Infection Research unraveled lung mucus’s physical properties: They discovered that a rigid gel scaffold in lung mucus separates large, fluid-filled pores and prevents nanoparticle movement beyond individual pore boundaries.

Credit: Credit: Schneider/ Kirch et al.

Abstract:
Mucus coats our airways' internal surfaces. The viscous gel humidifies the lungs and prevents viruses and other small particles like diesel soot from entering the body unchecked. Previously unclear was the extent to which such nanoparticles are able to move through the lungs' mucus. Here, the research evidence was contradictory. Scientists could not explain why, in inhaled medication development, drug nanoparticles often simply got stuck in the mucus never making it to their target destination inside the lung cells.

Lung mucus gel scaffold prevents nanoparticles from getting through: Joint press release by the Saarland University and the Helmholtz Centre for Infection Research

Saarbrücken, Germany | Posted on October 23rd, 2012

Now, as part of a German Research Foundation (DFG)-funded study, pharmacists and physicists were finally able to shed light on this dilemma. Scientists from the Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), a branch of the HZI, together with researchers from the Saarland University, the Université Paris-Diderot, and Fresenius Medical Care Germany collaborated on the study. "The mucus inside the lungs is a very special kind of gel. Its structure is very different from other gels," explains Claus-Michael Lehr, Professor for Biopharmacy and Pharmaceutical Technology at the Saarland University and head of the "Drug Delivery" Department at HIPS. "Normal" gels have a microstructure that resembles a delicate spiderweb made from thin, very fine threads that enclose small pores. When viewed under the microscope, lung mucus, by comparison, looks more like a sponge, with rigid, thick gel rods separating large pores filled with liquid gel. "These scaffold proteins are called mucins," explains Professor Lehr. The researchers have now shown that nanoparticles become stuck at these structures as though they were bars of a cage. The explanation for why many investigations found nanoparticles in the mucus to be highly mobile is because the research was done on a nanometer scale. Inside the pores, the particles can move around completely unobstructed and only when they try to move past individual pores are they prevented from doing so by the "bars."

"Our results are helping us to better understand the etiology of infectious diseases of the airways and how to treat them more effectively. In particular, they represent an important basis for the continued development of new inhaled medications," explains Professor Lehr. The newly gained insights show that it is important to consider how drugs overcome the mucus gel scaffold. Mucolytic techniques can be used where, essentially, the rods are melted such that they dissolve before the nanoparticle and, once the particle has passed, they fuse again.

One of the research tools Professor Christian Wagner and his team of experimental physicists at the Saarland University use to support their assumptions are optical tweezers: Bundled laser beams are used to grab and move the smallest particles just like you would use a regular pair of tweezers. "We can use the optical tweezers' laser beams to measure the force that is required to move a particle within the gel. This allows us to make conclusions about the medium that the bead is moved through," explains Professor Wagner. "We were able to pull the bead through the liquid inside the pore at a constant force - just as we would if we were dealing with a normal gel. However, whenever the bead hits the pore's wall, in other words the mucus's gel rods, the laser beam is unable to move it any further," explains Wagner. Experiments using an atomic force microscope as well as other tests are further supporting their hypothesis: As such, iron nanoparticles were able to penetrate the "normal" reference gel but not the lung mucus without any difficulties under the influence of a magnetic field. Structural analyses of the mucus were performed by scientists at Fresenius Medical Care Germany using a cryo-electron microscope.

The researchers expect that insights into the special structure of lung mucus will help guiding the development of a new generation of drugs to treat diseases of the airways.

Original publication:

Julian Kirch, Andreas Schneider, Berengere Abou, Alexander Hopf, Ulrich F. Schäfer, Marc Schneider, Christian Schall, Christian Wagner und Claus Michael Lehr Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus (doi: 10.1073/pnas.1214066109) PNAS 2012

The Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) is an HZI branch, which was founded in 2009 jointly by HZI and the University of the Saarland. HIPS researchers are concerned with the search for new drugs against infectious diseases, their optimization for human application, and determining how they can best be delivered to their target location.

The "Drug Delivery" Department studies the distribution of drugs within the body. The focus is on investigating how drugs are able to overcome biological barriers to safely reach their destination. The development of nanotransport particles constitutes an important part of the department's work.

####

For more information, please click here

Contacts:
Dr. Claus Michael Lehr

49-681-302-3039

Prof. Dr. Christian Wagner
(Specialty in Experimental Physics
at the Saarland University)
Ph: (+49) 681-302-3003, 2416

Copyright © Saarland University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Safety-Nanoparticles/Risk management

First human trial shows ‘wonder’ material can be developed safely: A revolutionary nanomaterial with huge potential to tackle multiple global challenges could be developed further without acute risk to human health, research suggests February 16th, 2024

New research may make future design of nanotechnology safer with fewer side effects: Study shows a promising strategy to reduce adverse reactions to nanoparticles by using complement inhibitors October 6th, 2023

Tests find no free-standing nanotubes released from tire tread wear September 8th, 2023

Billions of nanoplastics released when microwaving baby food containers: Exposure to plastic particles kills up to 75% of cultured kidney cells July 21st, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project