Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Feeling the Force of Cancer

Using ARTIDIS to feel the tissue structure of a tumor biopsy by a nanometer-sized atomic force microscope tip (Image: Martin Oeggerli)
Using ARTIDIS to feel the tissue structure of a tumor biopsy by a nanometer-sized atomic force microscope tip

(Image: Martin Oeggerli)

Abstract:
Breast cancer is the most common form of cancer in women with 5500 patients being diagnosed with the disease in Switzerland each year. Despite major scientific advancements in our understanding of the disease, breast cancer diagnostics remains slow and subjective. Here, the real danger lies in the lack of knowing whether metastasis, the spread of cancer, has already occurred. Nevertheless, important clues may be hidden in how metastasis is linked to specific structural alterations in both cancer cells and the surrounding extracellular matrix. This forms the motivation behind ARTIDIS ("Automated and Reliable Tissue Diagnostics"), which was conceived by Dr. med. Marko Loparic, Dr. Marija Plodinec and Prof. Roderick Lim to measure the local nanomechanical properties of tissue biopsies.

Feeling the Force of Cancer

Basel, Switzerland | Posted on October 23rd, 2012

"Fingerprinting" breast tumors

At the heart of ARTIDIS lies an ultra-sharp atomic force microscope tip of several nanometers in size that is used as a local mechanical probe to "feel" the cells and extracellular structures within a tumor biopsy. In this way, a nanomechanical "fingerprint" of the tissue is obtained by systematically acquiring tens of thousands of force measurements over an entire biopsy. Subsequent analysis of over one hundred patient biopsies could confirm that the fingerprint of malignant breast tumors is markedly different as compared to healthy tissue and benign tumors. This was validated by histological analyses carried out by clinicians at the University Hospital Basel, which showed a complete agreement with ARTIDIS. Moreover, the same nanomechanical fingerprints were found in animal studies initiated at the Friedrich Miescher Institute.

Plodinec, first author of the study, explains: "This unique fingerprint reflects the heterogeneous make-up of malignant tissue whereas healthy tissue and benign tumors are more homogenous." Strikingly, malignant tissue also featured a marked predominance of "soft" regions that is a characteristic of cancer cells and the altered microenvironment at the tumor core. The significance of these findings lies in reconciling the notion that soft cancer cells can more easily deform and "squeeze" through their surroundings. Indeed, the presence of the same type of "soft" phenotype in secondary lung tumors of mice reinforces the close correlation between the physical properties of cancer cells and their metastatic potential.

ARTIDIS in the clinics

"Resolving such basic scientific aspects of cancer further underscores the use of nanomechanical fingerprints as quantitative markers for cancer diagnostics with the potential to prognose metastasis.", states Loparic, who is project manager for ARTIDIS. On an important practical note, a complete biopsy analysis by ARTIDIS currently takes four hours in comparison to conventional diagnostics, which can take one week. Based on the potential societal impact of ARTIDIS to revolutionize breast cancer diagnostics, Lim's team and the Swiss company Nanosurf AG have now been awarded about 1.2 million Swiss francs by the Commission for Technology and Innovation (CTI) to further develop ARTIDIS into a state-of-the-art device for disease diagnostics with further applications in nanomedicine.

Over the next two years, Lim and colleagues will engage and work closely with clinicians to develop ARTIDIS into an easy-to-use "push-button" application to fingerprint diseases across a wide range of biological tissues. As a historical starting point, the first ARTIDIS demo-lab has already been established at the University Hospital Eye Clinic to collect data on retinal diseases with the goal of improving treatment strategies.

####

For more information, please click here

Contacts:
Thomas Schnyder

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

News and information

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanomedicine

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Chitosan coated, chemotherapy packed nanoparticles may target cancer stem cells June 30th, 2015

Discoveries

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Announcements

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Tools

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Nanometrics to Announce Second Quarter Financial Results on July 23, 2015 July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project