Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanoparticles Shut Off Cancer Genes - A New Tool for Screening Drug Targets

Abstract:
By sequencing cancer-cell genomes, scientists have discovered vast numbers of genes that are mutated, deleted or copied in cancer cells. This treasure trove is a boon for researchers seeking new drug targets, but it is nearly impossible to test them all in a timely fashion. To help speed up the process, researchers in the MIT-Harvard Center of Cancer Nanotechnology Excellence (MIT CCNE) have developed RNA-delivering nanoparticles that allow for rapid screening of new drug targets in mice. In their first mouse study, done with researchers at Dana-Farber Cancer Institute and the Broad Institute, they showed that nanoparticles that target a protein known as ID4 can shrink ovarian tumors.

Nanoparticles Shut Off Cancer Genes - A New Tool for Screening Drug Targets

Bethesda, MD | Posted on October 21st, 2012

The nanoparticle system, developed by Sangeeta Bhatia and her colleagues, is described in journal Science Translational Medicine. "What we did was try to set forth a pipeline where you start with all of the targets that are pouring out of genomics, and you sequentially filter them through a mouse model to figure out which ones are important. By doing that, you can prioritize the ones you want to target clinically using RNA interference, or develop drugs against," says Dr. Bhatia.

The MIT CCNE team collaborated with William Hahn, of Harvard Medical School, who is the leader of Project Achilles, a collaborative effort to identify promising new targets for cancer drugs from the flood of data coming from the National Cancer Institute's cancer-genome-sequencing project. Among those potential targets are many considered to be "undruggable," meaning that the proteins do not possess enzyme activity to which inhibitors can be developed. The new nanoparticles, which deliver short strands of RNA that can be designed to shut off any particular gene, may help scientists go after those undruggable proteins.

Through Project Achilles, Dr. Hahn and his colleagues have been testing the functions of many of the genes disrupted in ovarian cancer cells. By revealing genes critical to cancer-cell survival, this approach has narrowed the list of potential targets to several dozen.

An important step in identifying a good drug target would be to genetically engineer a strain of mice that are missing (or overexpressing) the gene in question, to see how they respond when tumors develop. However, this normally takes two to four years. A much faster way to study these genes would be simply to turn them off after a tumor appears. RNA interference (RNAi) offers a promising way to do that. During this naturally occurring phenomenon, short strands of RNA bind to the messenger RNA (mRNA) that delivers protein-building instructions from the cell's nucleus to the rest of the cell. Once bound, the mRNA molecules are destroyed and their corresponding proteins never get made.

Scientists have been pursuing RNAi as a cancer treatment since its discovery in the late 1990s, but have had trouble finding a way to safely and effectively target tumors with this therapy. Of particular difficulty was finding a way to get RNA to penetrate tumors. Dr. Bhatia's lab, which has been working on RNAi delivery for several years, joined forces with Dr. Hahn's group to identify and test new drug targets. Their goal was to create a "mix and dose" technique that would allow researchers to mix up RNA-delivery particles that target a particular gene, inject them into mice, and see what happens.

In their first effort, the researchers decided to focus on the ID4 protein because it is overexpressed in about a third of high-grade ovarian tumors and because they found it was crucial for ovarian cancer growth. The gene, which codes for a transcription factor, appears to be involved in embryonic development. It gets shut down early in life, then reactivates in ovarian tumors. To target ID4, Dr. Bhatia and her collaborators designed a new type of RNA-delivering nanoparticle, These particles can both target and penetrate tumors, something that had never before been achieved with RNAi. In a study of mice with ovarian tumors, the researchers found that treatment with the RNAi nanoparticles suppressed 80-90% of tumor growth.

The investigators are now using the particles to test other potential targets for ovarian cancer as well as other types of cancer, including pancreatic cancer. They are also looking into the possibility of developing the ID4-targeting particles as a treatment for ovarian cancer.

####

About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - “Targeted tumor-penetrating siRNA nanocomplexes for credentialing the ovarian cancer oncogene ID4.”

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Nanomedicine

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project