Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > University of Florida chemists pioneer new technique for nanostructure assembly

Abstract:
A team of researchers from the University of Florida department of chemistry has developed a new technique for growing new materials from nanorods.

University of Florida chemists pioneer new technique for nanostructure assembly

Gainesville, FL | Posted on October 18th, 2012

Materials with enhanced properties engineered from nanostructures have the potential to revolutionize the marketplace in everything from data processing to human medicine. However, attempts to assemble nanoscale objects into sophisticated structures have been largely unsuccessful. The UF study represents a major breakthrough in the field, showing how thermodynamic forces can be used to manipulate growth of nanoparticles into superparticles with unprecedented precision.

The study is published in the Oct. 19 edition of the journal Science.

"The reason we want to put nanoparticles together like this is to create new materials with collective properties," said Charles Cao, associate professor of chemistry at UF and corresponding author of the study. "Like putting oxygen atoms and hydrogen atoms together in a two-to-one ratio - the synergy gives you water, something with properties completely different from the ingredients themselves."

In the UF study, a synergism of fluorescent nanorods, sometimes used as biomarkers in biomedical research, resulted in a superparticle with an emission polarization ratio that could make it a good candidate for use in creating a new generation of polarized LEDs, used in display devices like 3-D television.

"The technology for making the single nanorods is well established," said Tie Wang, a postdoctoral researcher at UF and lead author of the study. "But what we've lacked is a way to assemble them in a controlled fashion to get useful structures and materials."

The team bathed the individual rods in a series of liquid compounds that reacted with certain hydrophobic regions on the nanoparticles and pushed them into place, forming a larger, more complex particle.

Two different treatments yielded two different products.

"One treatment gave us something completely unexpected -- these superparticles with a really sophisticated structure unlike anything we've seen before," Wang said.

The other yielded a less complex structure that Wang, and his colleagues were able to grow it into a small square of polarized film about one quarter the size of a postage stamp.

The researchers said that the film could be used to increase efficiency in polarized LED television and computer screens by up to 50 percent, using currently available manufacturing techniques.

"I've worked in nanoparticle assembly for a decade," said Dmitri Talapin, an associate professor of chemistry at the University of Chicago who was not involved with the study. "There are all sorts of issues to be overcome when assembling building blocks from nanoscale particles. I don't think anyone has been able to get them to self-assemble into superparticles like this before."

"They have achieved a tour-de-force in precision and control," he said.

####

For more information, please click here

Contacts:
Writer:
Donna Hesterman
352-846-2573


Sources:
Charles Cao

352-392-9839

Tie Wang
352-392-7261

Copyright © University of Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023

Molecular Machines

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Controlling the speed of enzyme motors brings biomedical applications of nanorobots closer: Recent advances in this field have made micro- and nanomotors promising devices for solving many biomedical problems October 13th, 2020

Giant nanomachine aids the immune system: Theoretical chemistry August 28th, 2020

Molecular Nanotechnology

Scientists push the boundaries of manipulating light at the submicroscopic level March 3rd, 2023

Scientist mimic nature to make nano particle metallic snowflakes: Scientists in New Zealand and Australia working at the level of atoms created something unexpected: tiny metallic snowflakes December 9th, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Nanotech scientists create world's smallest origami bird March 17th, 2021

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project