Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > University of Florida chemists pioneer new technique for nanostructure assembly

Abstract:
A team of researchers from the University of Florida department of chemistry has developed a new technique for growing new materials from nanorods.

University of Florida chemists pioneer new technique for nanostructure assembly

Gainesville, FL | Posted on October 18th, 2012

Materials with enhanced properties engineered from nanostructures have the potential to revolutionize the marketplace in everything from data processing to human medicine. However, attempts to assemble nanoscale objects into sophisticated structures have been largely unsuccessful. The UF study represents a major breakthrough in the field, showing how thermodynamic forces can be used to manipulate growth of nanoparticles into superparticles with unprecedented precision.

The study is published in the Oct. 19 edition of the journal Science.

"The reason we want to put nanoparticles together like this is to create new materials with collective properties," said Charles Cao, associate professor of chemistry at UF and corresponding author of the study. "Like putting oxygen atoms and hydrogen atoms together in a two-to-one ratio - the synergy gives you water, something with properties completely different from the ingredients themselves."

In the UF study, a synergism of fluorescent nanorods, sometimes used as biomarkers in biomedical research, resulted in a superparticle with an emission polarization ratio that could make it a good candidate for use in creating a new generation of polarized LEDs, used in display devices like 3-D television.

"The technology for making the single nanorods is well established," said Tie Wang, a postdoctoral researcher at UF and lead author of the study. "But what we've lacked is a way to assemble them in a controlled fashion to get useful structures and materials."

The team bathed the individual rods in a series of liquid compounds that reacted with certain hydrophobic regions on the nanoparticles and pushed them into place, forming a larger, more complex particle.

Two different treatments yielded two different products.

"One treatment gave us something completely unexpected -- these superparticles with a really sophisticated structure unlike anything we've seen before," Wang said.

The other yielded a less complex structure that Wang, and his colleagues were able to grow it into a small square of polarized film about one quarter the size of a postage stamp.

The researchers said that the film could be used to increase efficiency in polarized LED television and computer screens by up to 50 percent, using currently available manufacturing techniques.

"I've worked in nanoparticle assembly for a decade," said Dmitri Talapin, an associate professor of chemistry at the University of Chicago who was not involved with the study. "There are all sorts of issues to be overcome when assembling building blocks from nanoscale particles. I don't think anyone has been able to get them to self-assemble into superparticles like this before."

"They have achieved a tour-de-force in precision and control," he said.

####

For more information, please click here

Contacts:
Writer:
Donna Hesterman
352-846-2573


Sources:
Charles Cao

352-392-9839

Tie Wang
352-392-7261

Copyright © University of Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Chemistry

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Display technology/LEDs/SS Lighting/OLEDs

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Liquipel Debuts Eyesight-Saving ION-Glass Blue Light Protection for iPhones and Androids at RadioShack Stores Nationwide: Liquipel's Unique Protective Screen, Available at RadioShack, Cuts Harmful Blue Light Implicated in Macular Degeneration by 10x July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Molecular Machines

Injectable electronics: New system holds promise for basic neuroscience, treatment of neuro-degenerative diseases June 8th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Molecular Nanotechnology

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Rare form: Novel structures built from DNA emerge July 20th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

$8.5M Grant For Developing Nano Printing Technology: 4-D printing to advance chemistry, materials sciences and defense capabilities June 18th, 2015

Chip Technology

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Self Assembly

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Imec introduces self-assembled monomolecular organic films to seal ultra-porous low- k materials: Method prevents leakage of barrier precursors during the interconnect metallization scheme July 15th, 2015

Clay sheets stack to form proton conductors: Model system demonstrates a new material property emerging from the assembly of nanoscale building blocks July 13th, 2015

Nanomedicine

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Non-Enzyme Sensor Determines Level of Blood Sugar July 29th, 2015

Discoveries

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Announcements

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project