Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > CNSE's STC is first in Northeast to be designated as 'Trusted Foundry - Aggregator' by Dept. of Defense: One of only six in the country, designation will drive creation of additional high-tech jobs across upstate and enable leading-edge innovations for homeland defense

Abstract:
The College of Nanoscale Science and Engineering (CNSE) of the University at Albany announced today that its Smart System Technology and Commercialization Center of Excellence (STC) in Rochester has received the critical and prestigious designation as a Trusted Foundry - Aggregator by the U.S. Department of Defense's (DoD) Defense Microelectronics Agency.

This announcement is a further testimony to the success of Governor Andrew Cuomo's strategy and investments in nanotechnology. As the first organization in the Northeast to receive this accreditation, CNSE's STC now has the ability to work directly with DoD, intelligence agencies, allied foreign governments and government contractors in providing access to a secure, on-shore resource to enable the integration of multi-project wafers into trusted foundries. Serving as a clearinghouse for critical defense-related projects, this designation allows CNSE's STC to work with any trusted foundry to assist designers in achieving devices that are functional according to specification during initial manufacture - also known as "first-pass silicon" - as well as devices that integrate multiple designs, potentially from multiple teams.

CNSE's STC is first in Northeast to be designated as 'Trusted Foundry - Aggregator' by Dept. of Defense: One of only six in the country, designation will drive creation of additional high-tech jobs across upstate and enable leading-edge innovations for homeland defense

Albany, NY | Posted on October 17th, 2012



"This prominent designation gives further momentum to our efforts to establish New York as the center of the world's fast-growing nanotechnology industry," Governor Cuomo said. "This recognition will add fuel to the fire in further expanding the State's critical mission of attracting high-tech jobs, companies and private investment. I commend Dr. Kaloyeros and his team on this important accreditation, and look forward to further building New York's 21st century upstate technology corridor."

The accreditation comes on the heels of DoD's designation of CNSE's STC in April as a Trusted Foundry, recognizing it as a secure source for the development and manufacturing of integrated circuits for a wide range of defense and intelligence applications.

"This critical designation of CNSE's STC as the first Trusted Foundry - Aggregator in the Northeast is testament to the vision and leadership of Governor Andrew Cuomo in developing a world-class nanotechnology industry in New York," said CNSE Senior Vice President and CEO Dr. Alain E. Kaloyeros. "With this accreditation, CNSE's STC will gain further recognition as a prime location for next-generation military technologies, and at the same time, provide opportunities to attract additional high-tech growth to Western New York."

As the new nanotechnology-led requirements for national defense and security drive the need for on-shore, trusted sources for integrated circuit design and manufacturing, CNSE's STC will play an emerging role - that of Trusted Aggregator - serving as an enabler for exploiting the rapid innovation of the marketplace, and providing a trusted mechanism to utilize otherwise non-interlinked organizations to kick-start a technological transformation for the Department of Defense.

This new "Trusted Aggregator" accreditation, through the Defense Microelectronics Activity's (DMEA) Trusted Foundry Program, allows CNSE's STC to work with either U.S. or allied government agencies, or prime contractors, on classified integrated circuit designs. These designs, often developed by teams of designers, are then combined into robust multi-project-wafers that can be transitioned into accredited trusted foundries, and then ready for other trusted services, including packaging, assembly and test.

"CNSE's Smart System Technology & Commercialization Center of Excellence is honored to be designated as a Trusted Foundry - Aggregator, and to have the opportunity to serve an essential role in addressing the technology needs of the U.S. military," said CNSE Vice President for Disruptive Technologies and Director of CNSE's STC Paul Tolley. "Working with our partners in both the government and industrial sectors, our mission is to advance state-of-the-art military applications that will keep our soldiers out of harm's way and our citizens safe."

With this designation as the first Trusted Foundry - Aggregator in the Northeast, combined with its role as New York's first and only Trusted Foundry for the processing, packaging and assembly of MEMS and optoelectronic devices - essentially innovative sensors that use microprocessors to rapidly process data - CNSE's STC is uniquely positioned to attract corporate technology partners and new high-tech jobs to Western New York. CNSE's STC houses over 30,000 square feet of certified cleanroom facilities to enable fabrication, packaging and testing.

Next-generation MEMS devices can be used in a variety of nanotechnology-enabled military applications, including field-deployable, multi-functioning nanosensors and actuators, integrated system-on-a-chip (SOC) and system-in-a-package (SIP) technologies, and protective coatings and materials for the safety and security of military personnel and equipment.

####

About UAlbany NanoCollege
The UAlbany CNSE is the first college in the world dedicated to education, research, development and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience and nanoeconomics. With more than $14 billion in high-tech investments, CNSE represents the world’s most advanced university-driven research enterprise, offering students a one-of-a-kind academic experience and providing over 300 corporate partners with access to an unmatched ecosystem for leading-edge R&D and commercialization of nanoelectronics and nanotechnology innovations. CNSE’s footprint spans upstate New York, including its Albany NanoTech Complex, an 800,000-square-foot megaplex with the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 85,000 square feet of Class 1 capable cleanrooms. More than 2,700 scientists, researchers, engineers, students and faculty work here, from companies including IBM, Intel, GlobalFoundries, SEMATECH, Samsung, TSMC, Toshiba, Applied Materials, Tokyo Electron, ASML and Lam Research. An expansion now underway, part of which will house the world’s first Global 450mm Consortium, will add nearly 500,000 square feet of next-generation infrastructure, an additional 50,000 square feet of Class 1 capable cleanrooms, and more than 1,000 scientists, researchers and engineers from CNSE and global corporations. In addition, CNSE’s Solar Energy Development Center in Halfmoon provides a prototyping and demonstration line for next-generation CIGS thin-film solar cells, supporting its leadership of the U.S. Photovoltaic Manufacturing Consortium (PVMC). CNSE’s Smart System Technology and Commercialization Center of Excellence (STC) in Rochester offers state-of-the-art capabilities for MEMS fabrication and packaging. CNSE also co-founded and manages operations at the Computer Chip Commercialization Center at SUNYIT in Utica and is a co-founder of the Nanotechnology Innovation and Commercialization Excelerator in Syracuse.

For more information, please click here

Contacts:
Steve Janack
CNSE
Vice President
Marketing and Communications
(518) 956-7322

Copyright © UAlbany NanoCollege

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Jobs

Participate in the development of Malaysia’s National Graphene Action Plan 2020 October 10th, 2016

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

SUNY Poly CNSE Announces Milestone as M+W Group Opens U.S. Headquarters at Albany Nanotech Complex and Research Alliance Begins $105M Solar Power Initiative October 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Chip Technology

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

Announcements

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

Rare-earths become water-repellent only as they age March 22nd, 2017

Homeland Security

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Military

Graphene sheets capture cells efficiently: New method could enable pinpoint diagnostics on individual blood cells March 3rd, 2017

Bioinspired process makes materials light, robust, programmable at nano- to macro-scale: Ultralight web of silk nano fibers withstands load 4,000 times its weight February 28th, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project