Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UPC researchers eliminate infectious bacteria from medical textiles

One of the prototype machines used to produce medical textiles based on results generated by the SONO project.
One of the prototype machines used to produce medical textiles based on results generated by the SONO project.

Abstract:
The Molecular and Industrial Biotechnology Group of the Universitat Politècnica de Catalunya · BarcelonaTech (UPC) has improved the antimicrobial properties of medical textiles using an enzymatic pre-treatment combined with simultaneous deposition of nanoparticles and biopolymers under ultrasonic irradiation.

UPC researchers eliminate infectious bacteria from medical textiles

Barcelona, Spain | Posted on October 16th, 2012

The technique is used to create completely sterile antimicrobial textiles that help prevent hospital-acquired infections. The research was carried out within the framework of the European SONO project, which received €12 million in funding and involves a consortium of 17 companies and research centres, including the GBMI.

Nosocomial infections—defined as infections not present and without evidence of incubation at the time of admission—remain a significant problem for hospitals.

In an effort to tackle the problem, the European Union is funding the SONO project, which involves the participation of 17 partners, including the Molecular and Industrial Biotechnology Group, which is based at the UPC's Terrassa Campus. The goal is to improve the antimicrobial properties of medical textiles by using ultrasonic irradiation to deposit zinc oxide nanoparticles and biopolymers on these materials.

More durable nanoparticles

The team of researchers—based at the UPC's Terrassa Campus and led by Tzanko Tzanov—used enzymes that improve adhesion of the antimicrobial nanoparticles to the fabric under ultrasonic irradiation. By applying these enzymes, the researchers increased the durability of the nanoparticles on the fabric to such a degree that they remain present even after 70 laundry cycles.
The research conducted by the GBMI paves the way for the production of textiles with antimicrobial properties that are fully effective. The effectiveness of the antimicrobial treatment has also been boosted by incorporating in the fabric hybrid materials that combine organic and inorganic components (zinc and chitosan nanoparticles). In addition to eliminating any bacteria present, these materials prevent the growth of new microbes.

Two prototype machines based on the results generated by the SONO project are now being used to manufacture hospital gowns and linen. One is installed at the facilities of the Italian company KLOPMAN International, the other at the Romanian firm DAVO Clothing. The fabrics produced are currently being tested at a hospital in Sofia (Bulgaria), and the results obtained have been very positive.

Hospital-acquired infections: a growing problem

Factors leading to an increase in the rate of nosocomial infections include a rise in the number of immunocompromised patients, the appearance of resistant microorganisms, the increasing complexity of medical interventions, and the performance of invasive procedures.

Hospital-acquired infections are one of the leading causes of mortality and increased morbidity in inpatients and place a heavy burden on the health system. Between 3 and 10% of inpatients acquire an infection during their hospital stay. The mortality rate for nosocomial infections is 1%, and they contribute to 3% of mortality from other diseases.

As for medical costs, it has been estimated that infections of this type lengthen hospital stays by between five and ten days, a statistic that underscores the economic impact of the problem.

More than 4 million infections a year

Nosocomial infections of endogenous origin occur mainly as a result of contact with hospital gowns and sheets. In fact, any type of linen used in a hospital setting can harbour bacteria and spread infection to patients and medical staff. It is estimated that there are over 4 million hospital-acquired infections each year in Europe. This alarming statistic has driven the development of prophylactic techniques that focus directly on medical textiles. The SONO project, a European initiative aimed at producing smart antibacterial textiles that are 100% effective, is part of this effort.

####

About Universitat Politècnica de Catalunya (UPC)
The Universitat Politècnica de Catalunya is a public institution for research and higher education that specializes in architecture, the sciences and engineering. Our schools –many with roots reaching back centuries– make it a leading institution for basic and applied research and for the training of professionals and researchers whose goal is to work in the knowledge areas we focus on.

Our university is also an academic institution without borders: we’re open to the world and have a distinctly international outlook. As a result of our active participation in international networks of excellence —both European and Latin American— we have a close relationship with prestigious institutions and scientific and educational organizations around the world and are able to collaborate effectively with them. Our laboratories and classrooms are the scene of intense research activity and excellent teaching, and the results achieved have gained widespread recognition. This is particularly true of the UPC’s record on transferring technology and knowledge to the private sector and society in general. Thus our university is a leader when it comes to innovation, entrepreneurship, research and the technological development of the country’s industrial sector. At the same time, according to the SCImago research group, the UPC occupies top positions in its knowledge areas in the ranking of Latin American academic institutions. We’re also a leading university in terms of the number of projects assigned in strategic areas defined in the European Union’s Seventh Framework Programme. But we can’t rest on our laurels –especially not at a time when despite the difficulties we face there are also opportunities to be seized. The debate on the question of what kind of university we want for the year 2020 must contribute to further strengthening our institution.

For more information, please click here

Contacts:
Oficina de Mitjans de Comunicació OMC
+34 93 401 61 43

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Molecular and Industrial Biotechnology Group (GBMI):

SONO project:

Press room:

Related News Press

News and information

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Nanomedicine

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Discoveries

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Announcements

Tissue regeneration using anti-inflammatory nanomolecules August 22nd, 2014

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy August 22nd, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Textiles/Clothing

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Iranian Scientists Change Structure of Nanoparticles to Increase Durability of Antibacterial Activity of Fabrics July 7th, 2014

Nano-coatings release almost no nano-particles: Silver in the washing machine June 30th, 2014

Iranian Researchers Produce Protein Nanoparticles from Chicken Feather June 11th, 2014

Nanobiotechnology

The channel that relaxes DNA: Relaxing DNA strands by using nano-channels: Instructions for use August 20th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Interaction between Drug, DNA for Designing Anticancer Drugs Studied in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE