Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Osorb: Absorbent Nanomaterial Cleans up Toxic Water - Unexpected discovery leads to cleanup of hydrocarbons, pesticides and pharmaceuticals

Chemical engineer Paul Edmiston demonstrated Osorb®, a revolutionary new type of material that can clean water from oil spills, detect explosives and even treat the subsurface of Superfund sites, during a webcast hosted by NSF last year. Pictured are Dr. Stephen Jolly and Doug Martin of ABSMaterials showing clean water being passed over a vibratory separator after treatment with Osorb®. Find out more in this webcast video.
Credit: Sarah Pollock, ABSMaterials
Chemical engineer Paul Edmiston demonstrated Osorb®, a revolutionary new type of material that can clean water from oil spills, detect explosives and even treat the subsurface of Superfund sites, during a webcast hosted by NSF last year. Pictured are Dr. Stephen Jolly and Doug Martin of ABSMaterials showing clean water being passed over a vibratory separator after treatment with Osorb®. Find out more in this webcast video.

Credit: Sarah Pollock, ABSMaterials

Abstract:
Science is full of surprises. Chemist Paul Edmiston's search for a new way to detect explosives at airports instead led to the creation of what's now called "Osorb," swellable, organically-modified silica, or glass, capable of absorbing oil and other contaminants from water.

Osorb: Absorbent Nanomaterial Cleans up Toxic Water - Unexpected discovery leads to cleanup of hydrocarbons, pesticides and pharmaceuticals

Arlington, VA | Posted on October 15th, 2012

"The discovery of Osorb was serendipitous," says Edmiston, a chemistry professor at the College of Wooster in Wooster, Ohio. "It happened during basic science research, while I was investigating glasses that would bind with explosive vapors."

Edmiston was working on nano-engineered glass for explosives detection. His lab is composed of exclusively undergraduate students who were testing various methods of preparation at the time. During testing, one of the formulations instantaneously grew in size. That formulation became the first identified member of a now larger group of swellable silica-based materials.

"This is a good example of the value of basic scientific research, which is being conducted at undergraduate institutions across the nation," notes Edmiston.

Osorb is now the principal product of a company in Wooster called ABSMaterials, and Edmiston became the company's chief scientist. With support from the National Science Foundation (NSF), Edmiston and his colleagues at ABSMaterials are developing water remediation technologies for cities and industries--targeting everything from storm water to agricultural runoff.

"We made the decision to provide funding to ABSMaterials because of the potential for Osorb to have far-reaching impacts in enabling water purification. The project brings together a world-class technical team, led by Paul Edmiston, and a very exciting new material innovation," says Ben Schrag, program director in the division of industrial innovation and partnerships, within NSF's Directorate for Engineering.

Edmiston's introduction to ABSMaterials CEO Stephen Spoonamore was also serendipitous. Spoonamore knew about Edmiston's research, and when he spotted the professor on a plane, the CEO traded seats so they could talk. Their scientific and business association "took off" from there.

"I'd been asked to look at the challenges associated with the U.S. military working in remote locations. The biggest problem is not bullets. It's not bugs, guns or mines. It's water. How do you get enough water when you're out there alone? I had looked at the problem of contamination and didn't know of any good solutions," recalls Spoonamore.

"When you manufacture chips, electronics and chemicals, you need a lot of water," he continues. "You need to utilize that water in various ways. It becomes contaminated with volatiles; we can get those volatiles back out of the water."

Municipal water systems and companies in several U.S. states and Canadian provinces are now using Osorb. ABSMaterials is creating formulas to address various contaminants, including hydrocarbons, pharmaceuticals, pesticides, herbicides, chlorinated solvents and endocrine disruptors.

Edmiston says, chemically speaking, Osorb is halfway between the glass in a window and the silicone caulk in a bathtub. The glass is hard and the caulk is flexible.

"So, when Osorb expands and is absorbing something, it is not going through a traditional chemical reaction. Osorb is actually going through a mechanical expansion, sort of like the sponge in your kitchen, a nano-mechanical sponge," says Edmiston.

When Edmiston whipped up a batch of Osorb for the "Science Nation" team, the result was quick and dramatic. He combined several ingredients, including acetone, glass particles and a catalyst, and swirled them around in a beaker for a few seconds. Suddenly, there was a firm gel in the container.

"If we could get down inside the solution, the nanoparticles are being formed. They're starting to interconnect with each other. Until, eventually, the nanoparticles in here will connect up so much that they lock up," explains Edmiston, as he holds up the beaker. "So, after this fully connects and hardens up, we just dry it out down on the top and it shrinks down. Then, when it comes in contact with a contaminant, it will swell back up to take its original form."

Adding to Osorb's efficiency, says Edmiston, is that it can be re-used dozens of times. Absorbed compounds can be removed with heat, or rinsing.

While the first thing that may come to mind when thinking of removing oil from water is a disaster, such as the Deepwater Horizon oil spill in the Gulf of Mexico, Edmiston says there's an enormous need to clean up water that is part of the drilling process, known as "produced water."

"For every barrel of oil that we produce, probably, on average, 10 barrels of water comes out of the well. And, managing that water, which is going to contain hydrocarbons, is a challenge for our society. That's where Osorb fits in very well. So, in addition to cleaning up the occasional oil spill, we also need to clean up the water that is coming out of oil drilling and extraction every day," says Edmiston.

On the College of Wooster campus, Edmiston shows off a small garden, next to a parking lot, that's actually a working laboratory.

"This doesn't look like a place you'd find an advanced nanomaterial, such as Osorb. You were probably expecting more of a laboratory setting. But these garden plots are rain gardens that contain Osorb," explains Edmiston. "They are designed to treat the water that is coming from several nearby parking lots, buildings and a large lawn space. You have the stuff coming off the students' cars, including drops of oil, not to mention what could be in the garbage can. Without this rain garden, it would have gone into the street, and then into the creek."

Similar rain gardens are being used at other sites to clean water before it seeps back into the groundwater.

So far, Edmiston's unexpected discovery is finding many practical applications.

####

For more information, please click here

Contacts:
4201 Wilson Boulevard
Arlington, Virginia 22230, USA
Tel: (703) 292-5111
FIRS: (800) 877-8339
TDD: (800) 281-8749

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Miles O'Brien, Science Nation Correspondent:

Marsha Walton, Science Nation Producer

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Food/Agriculture/Supplements

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

DGIST and New Life Group launched a research project on "Functional beauty and health products using the latest nanotechnology" May 12th, 2023

Water

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Computational system streamlines the design of fluidic devices: This computational tool can generate an optimal design for a complex fluidic device such as a combustion engine or a hydraulic pump December 9th, 2022

Taking salt out of the water equation October 7th, 2022

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project