Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Osorb: Absorbent Nanomaterial Cleans up Toxic Water - Unexpected discovery leads to cleanup of hydrocarbons, pesticides and pharmaceuticals

Chemical engineer Paul Edmiston demonstrated Osorb®, a revolutionary new type of material that can clean water from oil spills, detect explosives and even treat the subsurface of Superfund sites, during a webcast hosted by NSF last year. Pictured are Dr. Stephen Jolly and Doug Martin of ABSMaterials showing clean water being passed over a vibratory separator after treatment with Osorb®. Find out more in this webcast video.
Credit: Sarah Pollock, ABSMaterials
Chemical engineer Paul Edmiston demonstrated Osorb®, a revolutionary new type of material that can clean water from oil spills, detect explosives and even treat the subsurface of Superfund sites, during a webcast hosted by NSF last year. Pictured are Dr. Stephen Jolly and Doug Martin of ABSMaterials showing clean water being passed over a vibratory separator after treatment with Osorb®. Find out more in this webcast video.

Credit: Sarah Pollock, ABSMaterials

Abstract:
Science is full of surprises. Chemist Paul Edmiston's search for a new way to detect explosives at airports instead led to the creation of what's now called "Osorb," swellable, organically-modified silica, or glass, capable of absorbing oil and other contaminants from water.

Osorb: Absorbent Nanomaterial Cleans up Toxic Water - Unexpected discovery leads to cleanup of hydrocarbons, pesticides and pharmaceuticals

Arlington, VA | Posted on October 15th, 2012

"The discovery of Osorb was serendipitous," says Edmiston, a chemistry professor at the College of Wooster in Wooster, Ohio. "It happened during basic science research, while I was investigating glasses that would bind with explosive vapors."

Edmiston was working on nano-engineered glass for explosives detection. His lab is composed of exclusively undergraduate students who were testing various methods of preparation at the time. During testing, one of the formulations instantaneously grew in size. That formulation became the first identified member of a now larger group of swellable silica-based materials.

"This is a good example of the value of basic scientific research, which is being conducted at undergraduate institutions across the nation," notes Edmiston.

Osorb is now the principal product of a company in Wooster called ABSMaterials, and Edmiston became the company's chief scientist. With support from the National Science Foundation (NSF), Edmiston and his colleagues at ABSMaterials are developing water remediation technologies for cities and industries--targeting everything from storm water to agricultural runoff.

"We made the decision to provide funding to ABSMaterials because of the potential for Osorb to have far-reaching impacts in enabling water purification. The project brings together a world-class technical team, led by Paul Edmiston, and a very exciting new material innovation," says Ben Schrag, program director in the division of industrial innovation and partnerships, within NSF's Directorate for Engineering.

Edmiston's introduction to ABSMaterials CEO Stephen Spoonamore was also serendipitous. Spoonamore knew about Edmiston's research, and when he spotted the professor on a plane, the CEO traded seats so they could talk. Their scientific and business association "took off" from there.

"I'd been asked to look at the challenges associated with the U.S. military working in remote locations. The biggest problem is not bullets. It's not bugs, guns or mines. It's water. How do you get enough water when you're out there alone? I had looked at the problem of contamination and didn't know of any good solutions," recalls Spoonamore.

"When you manufacture chips, electronics and chemicals, you need a lot of water," he continues. "You need to utilize that water in various ways. It becomes contaminated with volatiles; we can get those volatiles back out of the water."

Municipal water systems and companies in several U.S. states and Canadian provinces are now using Osorb. ABSMaterials is creating formulas to address various contaminants, including hydrocarbons, pharmaceuticals, pesticides, herbicides, chlorinated solvents and endocrine disruptors.

Edmiston says, chemically speaking, Osorb is halfway between the glass in a window and the silicone caulk in a bathtub. The glass is hard and the caulk is flexible.

"So, when Osorb expands and is absorbing something, it is not going through a traditional chemical reaction. Osorb is actually going through a mechanical expansion, sort of like the sponge in your kitchen, a nano-mechanical sponge," says Edmiston.

When Edmiston whipped up a batch of Osorb for the "Science Nation" team, the result was quick and dramatic. He combined several ingredients, including acetone, glass particles and a catalyst, and swirled them around in a beaker for a few seconds. Suddenly, there was a firm gel in the container.

"If we could get down inside the solution, the nanoparticles are being formed. They're starting to interconnect with each other. Until, eventually, the nanoparticles in here will connect up so much that they lock up," explains Edmiston, as he holds up the beaker. "So, after this fully connects and hardens up, we just dry it out down on the top and it shrinks down. Then, when it comes in contact with a contaminant, it will swell back up to take its original form."

Adding to Osorb's efficiency, says Edmiston, is that it can be re-used dozens of times. Absorbed compounds can be removed with heat, or rinsing.

While the first thing that may come to mind when thinking of removing oil from water is a disaster, such as the Deepwater Horizon oil spill in the Gulf of Mexico, Edmiston says there's an enormous need to clean up water that is part of the drilling process, known as "produced water."

"For every barrel of oil that we produce, probably, on average, 10 barrels of water comes out of the well. And, managing that water, which is going to contain hydrocarbons, is a challenge for our society. That's where Osorb fits in very well. So, in addition to cleaning up the occasional oil spill, we also need to clean up the water that is coming out of oil drilling and extraction every day," says Edmiston.

On the College of Wooster campus, Edmiston shows off a small garden, next to a parking lot, that's actually a working laboratory.

"This doesn't look like a place you'd find an advanced nanomaterial, such as Osorb. You were probably expecting more of a laboratory setting. But these garden plots are rain gardens that contain Osorb," explains Edmiston. "They are designed to treat the water that is coming from several nearby parking lots, buildings and a large lawn space. You have the stuff coming off the students' cars, including drops of oil, not to mention what could be in the garbage can. Without this rain garden, it would have gone into the street, and then into the creek."

Similar rain gardens are being used at other sites to clean water before it seeps back into the groundwater.

So far, Edmiston's unexpected discovery is finding many practical applications.

####

For more information, please click here

Contacts:
4201 Wilson Boulevard
Arlington, Virginia 22230, USA
Tel: (703) 292-5111
FIRS: (800) 877-8339
TDD: (800) 281-8749

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Miles O'Brien, Science Nation Correspondent:

Marsha Walton, Science Nation Producer

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Videos/Movies

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Food/Agriculture/Supplements

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Quorum reports on how cryo prep techniques for SEM are being applied in the Laboratory of Food Technology & Engineering at the University of Ghent, Belgium November 7th, 2017

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Water

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Bacteria-coated nanofiber electrodes clean pollutants in wastewater July 1st, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project