Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Click coupled graphene: fabricating nanocomposites

Abstract:
A graphene sheet can be incorporated with poly(ε-carprolactone) (PCL) to enhance the mechanical and thermal properties of shape memory polyurethane (SMP) if the filler can be properly dispersed through the polymer. Writing in the Journal of Polymer Science: Polymer Physics, Jae Whan Cho and colleagues introduce an effective technique using click coupled graphene to obtain high-performance nanocomposites.

Click coupled graphene: fabricating nanocomposites

Germany | Posted on October 13th, 2012

Graphene holds great potential in applications like molecular electronics, field emission devices, actuators, and sensors. "Click coupling is an emerging modification method for graphene's functionalization due to its high specificity, quantitative yield, compatibility with a variety of functional groups, and versatile applications under mild conditions," says Cho. "The controlled high performance of graphene-based polymer nanocomposites, including the mechanical, electrical, and thermal applications, can be created by using click chemistry."

The use of the click coupling approach allows a high grafting ratio of PCL to a single graphene sheet, resulting in good solubility and processability. As a result of the successful grafting, the modified surface characteristics allow for a homogenous dispersion of functionalized graphene in the SMP matrix displaying a strong reinforcement effect.

The breaking stress, elongation-at-break, and Young's modulus of the SMP were greatly enhanced, increasing by 109%, 28%, and 158% respectively for 2.0 wt% of the PCL-GS nanofiller compared to pure SMP. Moreover, the thermal stability, thermal conductivity, and shape recovery behavior of the host polymer were also unprecedentedly improved after the insertion of the click coupled graphene sheet.

"This approach offers complementary advantages, such as the grafting of high molecular weight polymer chains and a better coverage ratio on the graphene surface. This is also though to greatly extend the application range of graphene and encourage the growth of graphene based high performance nanocomposites for shape memory application, actuator, sensor, and etc," explains Cho.

Looking to expand the approach, Cho says that click chemistry is useful for modifying the surface properties of other carbon nanomaterials such as carbon nanotubes, graphene, and fullerene to satisfy special needs. "This methodology will help us to develop more advanced biomaterials, nanostructured polymers, and hybrids based on carbon nanomaterials."

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

Graphene/ Graphite

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

A human enzyme can biodegrade graphene August 28th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Sensors

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Measuring the nanoworld September 4th, 2018

Large scale preparation method of high quality SWNT sponges August 24th, 2018

Connecting the (Nano) Dots: NIST Says Big-Picture Thinking Can Advance Nanoparticle Manufacturing August 22nd, 2018

Discoveries

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Materials/Metamaterials

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Announcements

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project