Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Click coupled graphene: fabricating nanocomposites

Abstract:
A graphene sheet can be incorporated with poly(ε-carprolactone) (PCL) to enhance the mechanical and thermal properties of shape memory polyurethane (SMP) if the filler can be properly dispersed through the polymer. Writing in the Journal of Polymer Science: Polymer Physics, Jae Whan Cho and colleagues introduce an effective technique using click coupled graphene to obtain high-performance nanocomposites.

Click coupled graphene: fabricating nanocomposites

Germany | Posted on October 13th, 2012

Graphene holds great potential in applications like molecular electronics, field emission devices, actuators, and sensors. "Click coupling is an emerging modification method for graphene's functionalization due to its high specificity, quantitative yield, compatibility with a variety of functional groups, and versatile applications under mild conditions," says Cho. "The controlled high performance of graphene-based polymer nanocomposites, including the mechanical, electrical, and thermal applications, can be created by using click chemistry."

The use of the click coupling approach allows a high grafting ratio of PCL to a single graphene sheet, resulting in good solubility and processability. As a result of the successful grafting, the modified surface characteristics allow for a homogenous dispersion of functionalized graphene in the SMP matrix displaying a strong reinforcement effect.

The breaking stress, elongation-at-break, and Young's modulus of the SMP were greatly enhanced, increasing by 109%, 28%, and 158% respectively for 2.0 wt% of the PCL-GS nanofiller compared to pure SMP. Moreover, the thermal stability, thermal conductivity, and shape recovery behavior of the host polymer were also unprecedentedly improved after the insertion of the click coupled graphene sheet.

"This approach offers complementary advantages, such as the grafting of high molecular weight polymer chains and a better coverage ratio on the graphene surface. This is also though to greatly extend the application range of graphene and encourage the growth of graphene based high performance nanocomposites for shape memory application, actuator, sensor, and etc," explains Cho.

Looking to expand the approach, Cho says that click chemistry is useful for modifying the surface properties of other carbon nanomaterials such as carbon nanotubes, graphene, and fullerene to satisfy special needs. "This methodology will help us to develop more advanced biomaterials, nanostructured polymers, and hybrids based on carbon nanomaterials."

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Graphene/ Graphite

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

Bringing graphene speakers to the mobile market (video) September 12th, 2016

Atomic scale pipes available on demand and by design September 9th, 2016

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Sensors

Chains of nanogold forged with atomic precision September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Discoveries

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Materials/Metamaterials

Chains of nanogold forged with atomic precision September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Containing our 'electromagnetic pollution': MXene can protect mobile devices from electromagnetic interference September 13th, 2016

New material to revolutionize water proofing September 12th, 2016

Announcements

Chains of nanogold forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic