Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Click coupled graphene: fabricating nanocomposites

Abstract:
A graphene sheet can be incorporated with poly(ε-carprolactone) (PCL) to enhance the mechanical and thermal properties of shape memory polyurethane (SMP) if the filler can be properly dispersed through the polymer. Writing in the Journal of Polymer Science: Polymer Physics, Jae Whan Cho and colleagues introduce an effective technique using click coupled graphene to obtain high-performance nanocomposites.

Click coupled graphene: fabricating nanocomposites

Germany | Posted on October 13th, 2012

Graphene holds great potential in applications like molecular electronics, field emission devices, actuators, and sensors. "Click coupling is an emerging modification method for graphene's functionalization due to its high specificity, quantitative yield, compatibility with a variety of functional groups, and versatile applications under mild conditions," says Cho. "The controlled high performance of graphene-based polymer nanocomposites, including the mechanical, electrical, and thermal applications, can be created by using click chemistry."

The use of the click coupling approach allows a high grafting ratio of PCL to a single graphene sheet, resulting in good solubility and processability. As a result of the successful grafting, the modified surface characteristics allow for a homogenous dispersion of functionalized graphene in the SMP matrix displaying a strong reinforcement effect.

The breaking stress, elongation-at-break, and Young's modulus of the SMP were greatly enhanced, increasing by 109%, 28%, and 158% respectively for 2.0 wt% of the PCL-GS nanofiller compared to pure SMP. Moreover, the thermal stability, thermal conductivity, and shape recovery behavior of the host polymer were also unprecedentedly improved after the insertion of the click coupled graphene sheet.

"This approach offers complementary advantages, such as the grafting of high molecular weight polymer chains and a better coverage ratio on the graphene surface. This is also though to greatly extend the application range of graphene and encourage the growth of graphene based high performance nanocomposites for shape memory application, actuator, sensor, and etc," explains Cho.

Looking to expand the approach, Cho says that click chemistry is useful for modifying the surface properties of other carbon nanomaterials such as carbon nanotubes, graphene, and fullerene to satisfy special needs. "This methodology will help us to develop more advanced biomaterials, nanostructured polymers, and hybrids based on carbon nanomaterials."

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Graphene/ Graphite

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Nanotubes/Buckyballs/Fullerenes

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

Sensors

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Drum beats from a one atom thick graphite membrane June 15th, 2016

Discoveries

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Materials/Metamaterials

Coexistence of superconductivity and charge density waves observed June 23rd, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Announcements

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic