Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NREL Nano-Technology Solar Cell Achieves 18.2% Efficiency: Breakthrough should eliminate need for anti-reflection layer, cutting costs

Abstract:
Scientists at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have produced solar cells using nanotechnology techniques at an efficiency - 18.2% -- that is competitive. The breakthrough should be a major step toward helping lower the cost of solar energy.

NREL Nano-Technology Solar Cell Achieves 18.2% Efficiency: Breakthrough should eliminate need for anti-reflection layer, cutting costs

Golden, CO | Posted on October 12th, 2012

NREL tailored a nanostructured surface while ensuring that the light-generated electricity can still be collected efficiently from the solar cell. The researchers made nano-islands of silver on a silicon wafer and immersed it briefly in liquids to make billions of nano-sized holes in each square-inch of the silicon wafer surface. The holes and silicon walls are smaller than the light wavelengths hitting them, so the light doesn't recognize any sudden change in density at the surface and, thus, don't reflect back into the atmosphere as wasted energy. The researchers controlled the nanoshapes and the chemical composition of the surface to reach record solar cell efficiencies for this 'black silicon' material.

The paper, "An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures" by NREL's Jihun Oh, Hao-Chih Yuan, and Howard Branz, currently appears on Nature Nanotechnology's website.

Typically, solar cell manufacturers must add an extra anti-reflection layer, or two, to their cells, which boosts costs significantly.

NREL previously had demonstrated that their nanostructures reflected less light than the best anti-reflection layers of a solar cell. But until now, they hadn't been able to achieve overall efficiency with their black silicon cells that could approach the best marks for other silicon cells.

Oh, Yuan, and Branz, first had to determine why the increased surface area of the nanostructures dramatically reduced the collection of electricity and hurt the voltage and current of the cells.

Their experiments demonstrated that the high-surface area, and especially a process called Auger recombination, limit the collection of photons on most nanostructured solar cells. They concluded that this Auger recombination is caused when too many of the dopant impurities put in to make the cell work come through the nanostructured surface.

This scientific understanding enabled them to suppress Auger recombination with lighter and shallower doping. Combining this lighter doping with slightly smoother nanoshapes, they can build an 18.2%-efficient solar cell that is black but responds nearly ideally to almost the entire solar spectrum.

The Energy Department funded the research grant through the American Recovery and Reinvestment Act.

Branz, the grant's principal investigator, said, "This work can have a big impact on both conventional and emerging solar cell based on nanowires and nanospheres. For the first time it shows that really great solar cells can be made from nanostructured semiconductors."

Branz added, "The next challenges are to translate these results to common industrial practice and then get the efficiency over 20%. After that, I hope to see these kinds of nanostructuring techniques used on far thinner cells to use less semiconductor material."

"Now we have a clear study that shows how optimizing the surface area and the doping together can give better efficiency," Yuan said. "The surface area and the doping concentration near the surface affect nano-structured solar-cell performance."

First author, Oh, an NREL Postdoctoral Fellow said the NREL study "clearly shows that the right combination of a carefully nano-structured surface and good processing can reduce the cost while cutting unwanted reflection of sunlight."

####

About National Renewable Energy Laboratory (NREL)
NREL is the U.S. Department of Energy's primary national laboratory for renewable energy and energy efficiency research and development. NREL is operated for DOE by the Alliance for Sustainable Energy, LLC.

For more information, please click here

Contacts:
William Scanlon
303-275-4051

Copyright © National Renewable Energy Laboratory (NREL)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download paper - "An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures.":

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Laboratories

Ames Laboratory, UConn discover superconductor with bounce October 25th, 2017

Nanotube fiber antennas as capable as copper: Rice University researchers show their flexible fibers work well but weigh much less October 23rd, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3ís significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Energy

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Solar/Photovoltaic

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project